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1. Introduction

Over the last decades, D-branes and their descriptions from various points of views such

as boundary states in conformal field theory or solutions to supergravity equations have

received a lot of attention. An interesting and quite useful property of D-branes is that

there exist operations which act naturally on them and relate D-branes in possibly different

theories. Examples of such operations are dualities such as T-duality or mirror symmetry,
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but also monodromy transformations along paths in moduli spaces. Some of those oper-

ations, namely the natural operations on the category of B-type D-branes in Calabi-Yau

compactifications, have an elegant description in terms of Fourier-Mukai transformations.

All these examples have in common that they do not involve the string coupling gs and

hence can be studied at weak coupling in the framework of conformal field theory.

From a world sheet point of view, a natural operation on D-branes is provided by

defects, one-dimensional interfaces, along which two possibly different conformal field the-

ories are glued together. Defects in conformal field theory have received some attention

recently [1 – 9] and have also emerged as domain walls in the discussion of the AdS3/CFT2-

duality [2].

Among the defects in conformal field theories, there is a special class of so-called

topological defects, which have the property that they can be moved freely across the world

sheet, as long as they do not cross field insertions or other defects. They act naturally on

conformal boundary conditions, i.e. D-branes. Namely, when both defects and boundaries

are present one can bring defects close to the world sheet boundary and in the limit in

which the defect approaches the boundary, a new boundary condition arises. To put it

differently, the world sheet boundary couples to a new D-brane. Likewise, one can bring

together two topological defects. In the limit in which the two merge, one obtains new

defects, and hence topological defects can be composed [1, 6].

Generic defects however cannot be composed or act on boundary conditions in this

way. In general, correlation functions in the presence of defects depend on the positions

of the latter, and in particular exhibit singularities when defects approach each other or

world sheet boundaries. So the process of merging defects, or moving defects to world sheet

boundaries is a priori not well defined for generic conformal defects.

Of course, defects can also be studied in the context of topological rather than confor-

mal field theory. In topological field theories, where correlation functions do not depend

on the world sheet metric, defects can always be moved and hence can always merge and

act on the D-branes of the topological theory. Therefore, any defect in topological field

theory provides a suitable map between the respective D-brane categories.

This is in particular true for defects in topologically twisted N = (2, 2) supersymmetric

field theories (including superconformal field theories). As will be described in section 2,

supersymmetry preserving defects in N = (2, 2) supersymmetric field theories come in

two variants, just as D-branes or orientifolds do. A-type defects are compatible with

the topological A-twist, B-type defects with the topological B-twist. Hence the topological

twist endows both of these types of defects with a composition and action on the respective

class of D-branes, even though they are not topological in the untwisted field theory. Unlike

D-branes or orientifolds, defects can be of A- and B-type at the same time. Those defects

are topological already in the untwisted theory.

Our main focus in this paper will be the investigation of B-type defects in N = (2, 2)

supersymmetric Landau-Ginzburg models. These flow to superconformal field theories in

the IR, and play an important role in the study of string compactifications on Calabi-Yau

manifolds, where they provide useful descriptions of the small volume regime.

We consider the situation where a Landau-Ginzburg model with superpotential W1 is
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separated by a defect from a Landau-Ginzburg model with superpotential W2. We argue

that similar to B-branes in these models, which can be represented by matrix factorisations

of the Wi [10 – 12], B-type defects between the models are described by matrix factorisations

of the difference W1 − W2 of the superpotentials (see [13, 14] for earlier work that has

discussed these defects from a slightly different point of view). We then give a prescription

of the composition of these defects, and their action on the respective boundary conditions

in this framework.

We will discuss in particular a simple class of defects, which do not introduce any

additional degrees of freedom. Such defects are related to symmetries and indeed orbifolds

of the underlying bulk theories. They implement the action of these symmetries on bulk

fields, and their defect-changing operators correspond to twisted sectors in the respective

orbifold models.

For the simple classes of Landau-Ginzburg models with a single chiral superfield and

superpotential W = Xd and their cousins1 with an additional superfield and superpoten-

tial W = Xd + Z2, we compare the description of B-type defects, their composition and

action on B-type boundary conditions in the framework of matrix factorisations with the

respective conformal field theory description available in the IR. Namely, these Landau-

Ginzburg models flow to N = 2 superconformal minimal models in the IR, in which defects

can be studied by means of CFT techniques. We find complete agreement between the two

approaches.

This paper is organised as follows. In section 2 we set the stage and discuss general

properties of supersymmetry preserving defects in theories with N = (2, 2) supersymmetry.

section 3 is devoted to the study of defects in Landau-Ginzburg models. In particular,

we show that supersymmetry preserving B-type defects in Landau-Ginzburg models are

described by matrix factorisations. As a next step, in section 4 we consider situations where

several defects or both defects and boundaries are present, and work out the composition

of defects and their action on boundary conditions in this framework. The special class of

symmetry defects is discussed in section 5. section 6 contains the explicit comparison of B-

type defects in Landau-Ginzburg with superpotentials W = Xd, W = Xd +Z2 and defects

in the corresponding superconformal minimal models. Some technical details appear in the

appendix.

2. Defects in N = 2 theories

In this paper we consider two-dimensional field theories with N = 2 supersymmetry for

both left and right moving degrees of freedom. There are hence four anti-commuting

supercharges Q±, Q̄± satisfying the usual anti-commutation relations

{Q±, Q̄±} = H ± P , (2.1)

with all other anti-commutators vanishing. H and P denote energy and momentum density,

the superscripts ± distinguish left and right movers and a bar indicates conjugation.

1Although the bulk Landau-Ginzburg theory hardly changes when adding a square to the superpotential,

the B-brane spectra of the two theories are rather different [15].
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We are interested in situations where two such theories are glued together along a com-

mon one-dimensional interface, a defect. Our focus will be on supersymmetry preserving

defects, i.e. those defects whose presence still allows the total theory to be supersymmetric

with respect to one half of the supersymmetries present in the original bulk theories. Just

like in the case of N = 2 theories on surfaces with boundaries or unoriented surfaces, there

are two ways of doing so. The respective defects are called A- and B-type respectively.

Modelling the defect on the real line R ⊂ C separating two possibly different theories

on the upper and lower half plane, B-type defects have the property that the combina-

tion QB = Q+ + Q− of supercharges and its conjugate Q̄B are preserved everywhere on

C. That means that along the interface R the supercharges have to satisfy the following

“gluing conditions”:

Q
(1)
+ + Q

(1)
− = Q

(2)
+ + Q

(2)
− , (2.2)

Q̄
(1)
+ + Q̄

(1)
− = Q̄

(2)
+ + Q̄

(2)
− .

Here, the superscripts (1) and (2) refer to the two theories on upper and lower half plane

respectively. For A-type defects on the other hand, the gluing conditions along the defect

are twisted by the automorphism of the supersymmetry algebra which exchanges Q± with

Q̄±:

Q
(1)
+ + Q̄

(1)
− = Q

(2)
+ + Q̄

(2)
− , (2.3)

Q̄
(1)
+ + Q

(1)
− = Q̄

(2)
+ + Q

(2)
− .

They ensure that the combination QA = Q+ + Q̄− and its conjugate Q̄A are preserved.2

In situations where defects as well as boundaries are present, A- or B-type supersymme-

try can be preserved in case all defects and all boundaries are of A- or B-type respectively.

Just as for D-branes, mirror symmetry exchanges A- and B-type defects.

Note that there are two special classes of defects which actually preserve the full

N = (2, 2) algebra. The first class consists of defects such that

Q
(1)
± = Q

(2)
± , Q̄

(1)
± = Q̄

(2)
± on R , (2.4)

which implies both A- as well as B-type gluing conditions (2.3), (2.2). One particular defect

of this kind is the trivial defect between one and the same theory. Defects of the second

class are related to those of the first class by mirror symmetry. They obey the respective

mirror twisted gluing conditions

Q
(1)
+ = Q

(2)
+ , Q̄

(1)
+ = Q̄

(2)
+ (2.5)

Q
(1)
− = Q̄

(2)
− , Q̄

(1)
− = Q

(2)
− on R .

2Of course, there are also other automorphisms of the N = (2, 2) supersymmetry algebra, which can be

used to twist the gluing conditions. For η± ∈ {±1}, Q± 7→ η±Q±, Q̄± 7→ η±Q̄± gives rise to modified A-

and B-type gluing conditions. For simplicity of presentation we will refrain from spelling out the details of

these additional possibilities here, but we will comment on η±-twisted gluing conditions in the context of

conformal field theory in section 6.2.
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Such defects exist for example between a theory and its mirror and hence realise mirror

symmetry as a defect.

Using the supersymmetry algebra, it follows immediately that defects of these two

classes preserve translational invariance in space and time because the gluing conditions

for the supercharges imply

H(1) = H(2), P (1) = P (2) on R . (2.6)

This is not possible for world sheet boundaries which automatically break one half of the

local translation symmetries and therefore can at most preserve half of the bulk supersym-

metries. In contrast, a theory with a defect allows for the possibility of being invariant

under shifts of the defect on the world sheet.

Nevertheless, the similarities between defects and boundaries are indeed very useful

for the treatment of defects. In particular, one can obtain an equivalent description of the

situation described above by folding the world sheet along the real line and realising the

degrees of freedom of the theories on the upper and lower half plane as different sectors

in a “doubled” theory defined on the upper half plane only [2, 16]. Folding the theory

from the lower to the upper half plane, left and right movers are interchanged, and defects

in the original theory on the complex plane become boundary conditions in the doubled

theory. If the defect preserves the full N = (2, 2) supersymmetry, the corresponding

boundary conditions in the doubled theory are of permutation type, i.e. left movers of the

supercharges in one sector are glued to right movers of the respective supercharges in the

other one and vice versa.

Of particular interest in the context of string theory are theories with N = (2, 2)

superconformal symmetry. The corresponding symmetry algebra is generated by the modes

of the energy momentum tensor T , U(1)-current J and two supercurrents G± together with

the ones of the respective right movers T , J , G
±
. (As is customary in CFT, the superscripts

± specify the U(1)-charge of the respective current, and right movers will be distinguished

from left movers by a bar. This differs from the notation used for the supercharges Q in

the discussion above.)

In these theories, one can consider defects preserving one half of the bulk superconfor-

mal symmetry. As before, we call them A- and B-type depending on which combinations

of supercharges are conserved. The corresponding gluing conditions along the real line are

given by

T (1) − T
(1)

= T (2) − T
(2)

, (2.7)

J (1) − J
(1)

= J (2) − J
(2)

,

G±(1) + G
±(1)

= G±(2) + G
±(2)

for B-type defects and

T (1) − T
(1)

= T (2) − T
(2)

, (2.8)

J (1) + J
(1)

= J (2) + J
(2)

,

G±(1) + G
∓(1)

= G±(2) + G
∓(2)
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for A-type defects.

Just as in the general situation, there is also a class of defects that preserves the full

N = (2, 2) superconformal symmetry, and is hence both of A- as well as B-type. Because

of the two automorphisms of the N = 2 superconformal algebra there are essentially four

possible gluing conditions for those defects. Namely, for a, ā ∈ {±1} we have

T (1) − T (2) = 0 = T
(1) − T

(2)
, (2.9)

J (1) − aJ (2) = 0 = J
(1) − āJ

(2)
,

G±(1) + Ga±(2) = 0 = G
±(1)

+ G
ā±(2)

.

These defects in particular glue together holomorphic and antiholomorphic energy mo-

mentum tensors separately and therefore preserve both holomorphic and antiholomorphic

Virasoro algebras. This implies that despite the presence of such a defect, correlation func-

tions are still covariant with respect to all local conformal transformations of the world

sheet, even those which change the position of the defect. This implies that correlation

functions do not change when such defects are shifted on the world sheet. Defects which

have this property have been called topological in [5].

Since they can be shifted on the world sheet, topological defects can in particular

be brought on top of each other, to “fuse” to new defects. This procedure furnishes

the topological defects with a composition. Moreover, they can also be brought on top of

world sheet boundaries producing new boundary conditions in this way. Hence, topological

defects act on boundary conditions. This is not true for non-topological defects. Letting

two of those defects approach each other, or one of them approach a boundary will in

general lead to singularities in correlation functions.

Certain N = (2, 2) supersymmetric field theories, in particular those considered here

can be topologically twisted [17]. Twisting changes the energy momentum tensor of the

theory in such a way that it is exact with respect to a BRST-operator Q = QA for an A-

twisted theory or Q = QB for a B-twisted theory. A consequence of this is that correlation

functions only involving Q-closed fields are invariant with respect to variations of the

world sheet metric and thus define a topological field theory. This twisting procedure is

compatible with the existence of boundaries and defects, as long as the chosen BRST-charge

is preserved by the boundaries and defects. More precisely, A- and B-twisting is compatible

with A- and B-type boundary conditions and defects respectively. Indeed, by arguments

similar to those used for pure bulk theories it follows that also correlation function of

BRST-closed fields in the presence of boundaries and defects become topological in the

twisted theory. In particular, upon twisting all defects, even those which have not been

topological in the original untwisted theory become topological, i.e. in the topologically

twisted theory they can be shifted on the world sheet. Thus, the topological twisting

provides a composition of all A- and B-type defects and an action of them on A- and

B-type boundary conditions respectively. We will study the action of B-type defects in

Landau-Ginzburg models and their action on B-type boundary conditions below.

Let us close this section with a few general remarks about defects. Similarly to bound-

ary conditions, defects add to the structure of the underlying bulk theories. For instance,
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if a defect is located on a closed curve, such that the world sheet can be cut open on

both sides of it, the defect provides a homomorphism between the bulk Hilbert spaces of

the theories it separates. (This is similar to boundary conditions giving rise to boundary

states.) These defect operators are often a convenient way to encode part of the informa-

tion about a defect, and we will make use of it below. Note however that there is more

structure. Similar to boundary conditions which come with additional degrees of freedom

such as boundary condition changing boundary fields (open strings between the respective

D-branes), also defects introduce new degrees of freedom. Unlike boundaries however, de-

fects can form junctions, and there are fields localised on all possible junctions of defects

(including the one-junction, which is a tip of a defect). In a more string theoretic language

one would call these degrees of freedom closed strings twisted by the respective defects. If

moreover there are boundaries and defects in a theory, defects can also end on boundaries,

giving rise to even more degrees of freedom etc. Part of these structures will be described

in explicit examples below.

3. Defects in Landau-Ginzburg models

3.1 Bulk action

Our conventions for the N = (2, 2) superspace are those of [18]. The two-dimensional

(2, 2) superspace is spanned by two bosonic coordinates x± = x0 ± x1 and four fermionic

coordinates θ±, θ̄±. The supercharges are realised as the following differential operators

on superspace

Q± =
∂

∂θ±
+ iθ̄±∂± , Q̄± = − ∂

∂θ̄±
− iθ±∂± .

The superderivatives are given by

D± =
∂

∂θ±
− iθ̄±∂± , D̄± = − ∂

∂θ̄±
+ iθ±∂± .

Chiral superfields X satisfy the conditions D̄±X = 0 and have an expansion

X = φ(y±) + θαψα(y±) + θ+θ−F (y±) (3.1)

into components, where y± = x± − iθ±θ̄± and α ∈ {±}. The conjugate fields X̄ are

anti-chiral, i.e. they satisfy D±X̄ = 0.

We consider Landau-Ginzburg models with a finite number of chiral superfields Xi and

action given by the sum

S = SD + SF (3.2)

of D- and F-term. The D-term

SD =

∫
d4θd2xK(Xi, X̄i) (3.3)

is determined by the Kähler potential K which we will assume to be flat and diagonal,

K =
∑

i X̄iXi. In the topologically twisted theory, the variation of a D-term is BRST

trivial and therefore all correlation functions are independent of D-term changes. This is
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well-known for the case of world sheets without boundary, and has been extended to world

sheets with boundary in [19] . The F-term

SF =

∫
d2xdθ−dθ+W (Xi)|θ̄±=0 +

∫
d2xdθ̄+dθ̄−W (X̄i)|θ±=0 (3.4)

is parametrised by the superpotential W , a holomorphic function of the chiral superfields

Xi. It is this term, which completely determines the B-twisted model, and we will therefore

focus our discussions on it. In the case that W is quasi-homogeneous the Landau-Ginzburg

model will flow to a conformal field theory in the IR. According to standard arguments,

the D-term will adjust itself in this process to be compatible with the conformal symmetry,

whereas the F-term remains unrenormalised. Therefore, for comparisons with conformal

field theory only the F-term will be relevant.

On a world sheet without boundaries or defects, the Landau-Ginzburg action is man-

ifestly N = (2, 2) supersymmetric, i.e. the variation of the action with respect to

δ = ǫ+Q− − ǫ−Q+ − ǭ+Q̄− + ǭ−Q̄+ (3.5)

vanishes for all ǫ±, ǭ±. The corresponding conserved supercharges can be realised as

Q± =

∫
dx1

(
(∂0 ± ∂1

)
φ̄j̄ψ

j
± ∓ iψ̄ī

∓∂īW
)
, (3.6)

Q̄± =

∫
dx1

(
ψ̄j̄
±(∂0 ± ∂1

)
φj ± iψi

∓∂iW
)
.

3.2 B-type boundary conditions and matrix factorisations

Let us briefly review the formulation of a Landau-Ginzburg theory on the upper half plane

(UHP) [20, 10, 21, 11, 12]. We will consider the situation where superspace acquires a

B-type superboundary with coordinates

x+ = x− = t, θ+ = θ− = θ, θ̄+ = θ̄− = θ̄ . (3.7)

The presence of the boundary reduces the number of supersymmetries of the theory, because

only the combinations

δB = ǫQ − ǭQ̄, (3.8)

of the supersymmetry generators with

Q = Q+ + Q−, Q̄ = Q̄+ + Q̄− (3.9)

are compatible with the B-type boundary. To put it differently, a supersymmetry of the

form (3.5) only preserves the boundary if ǫ+ = −ǫ− =: ǫ and ǭ+ = −ǭ− =: ǭ.

As it turns out, the restriction of the bulk Landau-Ginzburg action to a world sheet

with B-type boundary on its own is not invariant under the B-type supersymmetry (3.8).

Namely, the δB-variation of the bulk Landau-Ginzburg action (3.2) in the presence of the

boundary introduces boundary terms

δBS = δBSD + δBSF , (3.10)
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where in particular the variation of the F-term yields [20, 18]

δBSF = i

∫

∂Σ
dtdθǭW − i

∫

∂Σ
dtdθ̄ǫW̄ . (3.11)

Thus, in order to define a supersymmetric theory on a surface with boundary, one either has

to impose boundary conditions on the fields, which ensure the vanishing of (3.10), or add

an additional boundary term to the action whose supersymmetry variation compensates

for the term coming from the bulk variation. In fact, it has been argued in [11, 12]

that the D-term in (3.10) can always be compensated by the supersymmetry variation of

an appropriately chosen boundary term, and that the F-term (3.11) can be cancelled by

introducing extra non-chiral fermionic boundary superfields π1, . . . , πr satisfying

D̄πi = Ei . (3.12)

Indeed, the supersymmetry variation of the boundary F-term

∆S = i

∫

∂Σ
dtdθJiπi + c.c (3.13)

exactly cancels the term (3.11) resulting from the supersymmetry variation of the bulk

F-term if ∑

i

JiEi = W . (3.14)

Therefore, any factorisation (3.14) of the superpotential W gives rise to a supersymmetric

action of the Landau-Ginzburg model on a surface with B-type boundary. To put it

differently, such a factorisation defines a supersymmetric B-type boundary condition of the

model. We will omit the discussion of the kinetic terms for the boundary fermions, since

they play no role in the current context.

Physically, the D-branes constructed in this way are composites of a brane-anti-brane

pair obtained by a tachyon condensation. To be more precise, the brane-anti-brane pair

is a pair of flat space-filling D-branes in the theory with vanishing superpotential W = 0

— a sigma-model with target space CN , where N is the number of chiral superfields. The

tachyon condensation is triggered by turning on the superpotential W . In this picture,

fermionic degrees of freedom correspond to strings stretching from brane to anti-brane. In

particular, the fermionic matrix Q contains the tachyon profile on the space-time filling

brane-anti-brane pair.

As in the case of Landau-Ginzburg theories on surfaces without boundary, one can

also perform a topological twist in the presence of supersymmetric boundaries to extract

information about the topological sectors. However, only the topological B-twist is compat-

ible with B-type boundary conditions. The BRST-charge of the corresponding B-model in

the presence of the B-type boundary condition defined by (3.14) then receives a boundary

contribution

Qbd =
∑

i

Jiπi + Eiπ̄i , (3.15)
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which obeys Q2
bd = W by means of the factorisation condition (3.14). As usual, the degrees

of freedom of the twisted theory are given by the cohomology of the BRST-operator. In

particular, the topological boundary fields are described by the cohomology of the boundary

BRST-operator, which acts on boundary fields by the graded commutator with Qbd. (The

Z2-grading is due to the presence of bosonic and fermionic degrees of freedom on the

boundary.)

Two such B-type boundary conditions defined by boundary BRST-charges Qbd and

Q′
bd, are equivalent, if there are homomorphisms U and V between the respective spaces

of boundary fields, which preserve the Z2-grading such that

Q′
bd = UQbdV , UV = id′ + {Q′

bd, O′} , V U = id + {Qbd, O} (3.16)

for some O and O′. U corresponds to an open string operator propagating from one brane

to the other which can be composed with the “inverse” V propagating in the other direction

to yield the identity operators on both of the individual branes.

Note that the notion of equivalence in the B-brane category only requires U and V to

be inverse up to BRST-trivial terms.3 One consequence of this is that all physically trivial

matrix factorisations, i.e. those associated to D-branes which do not have any non-trivial

open strings ending on them, are mutually equivalent. One particular representative of

this trivial factorisation can be obtained by setting r = 1, J1 = 1 and E1 = W . In the

language of the covering theory with W = 0, this amounts to a trivial brane-anti-brane

pair. Adding it to any other boundary condition does not change the physical content, and

hence gives rise to an equivalent boundary condition:

Qbd ∼ Qbd ⊕ Qtriv . (3.17)

Choosing an explicit matrix representation of the Clifford algebra generated by the

boundary fermions πi, the boundary BRST-charges Qbd are represented by 2r+1 × 2r+1-

matrices of the form

Qbd =

(
0 p1

p0 0

)
, (3.18)

where the pi are 2r × 2r-matrices whose entries are polynomials in the chiral fields Xi

such that p1p0 = W (Xi)id2r×2r = p0p1. The pi constitute a matrix factorisation of W of

rank 2r and determine Qbd and hence the B-type boundary condition. More generally also

Qbd constructed out of matrix factorisations p1, p0 of arbitrary rank N define meaningful

boundary conditions. This has been shown in [19] by taking into account the gauge degrees

of freedom in higher multiplicity brane configurations in the underlying CN -sigma model.

One often represents matrix factorisations in the following way [21]

P : P1 = C[Xi]
N

p1

⇄
p0

C[Xi]
N = P0 , p1p0 = W (Xi)idP0 , p0p1 = W (Xi)idP1 .

(3.19)

3It is also possible to consider related categories, in which the notion of equivalence is different from the

one used here. For instance instead of taking as morphism spaces the BRST-cohomology, one could use the

space of BRST-closed operators. In order to define an equivalence in this category U and V would have to

be genuine inverses of each other.
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As follows from (3.16), two such matrix factorisations P and P ′ lead to equivalent boundary

conditions, if there exist homomorphisms ui : Pi → P ′
i, vi : P ′

i → Pi such that

p′1 = u0p1v1 , p′0 = u1p0v0 , p1 = v0p
′
1u1 , p0 = v1p

′
0u0 (3.20)

and

v0u0 = idP0 + χ1p0 + p1χ0 , v1u1 = idP1 + p0χ1 + χ0p1 , (3.21)

u0v0 = idP ′
0
+ χ′

1p
′
0 + p′1χ

′
0 , u1v1 = idP ′

1
+ p′0χ

′
1 + χ′

0p
′
1 ,

for some χi : Pi → Pi+1, χ′
i : P ′

i → P ′
i+1.

In this language, the class of trivial boundary conditions mentioned above can be

represented by the rank-one matrix factorisations

T : P1 = C[Xi]
p1=1

⇄

p0=W
C[Xi] = P0 . (3.22)

Any trivial matrix factorisation is equivalent to this special representative.

As mentioned above, the topological boundary degrees of freedom are described by

the cohomology of the boundary BRST-operator. In terms of matrix factorisations the

boundary BRST-operator on the boundary condition changing sector between boundary

conditions defined by matrix factorisations P and P ′ (topological open strings between

the D-branes associated to P and P ′) is given by the graded commutator with Qbd on

the space HomC[Xi](P1 ⊕ P0, P1
′ ⊕ P0

′) of boundary changing fields. More precisely, this

operator acts on a boundary condition changing field ϕ ∈ HomC[Xi](P1 ⊕ P0, P1
′ ⊕ P0

′) by

ϕ 7→ Q′
bdϕ − σ′ϕσQbd , (3.23)

where σ = idP0 − idP1 is the grading operator on P . Since the BRST operator respects the

grading, also its cohomology H(P,P ′) = H0(P,P ′) ⊕H1(P,P ′) is graded.

In the following, we will mostly be interested in the case that W is quasi-homogeneous,

i.e. W (λqiXi) = λqW (Xi) for some weights qi, q, because these superpotentials directly

correspond to the superconformal field theories in the IR.4 For such W , one can also

consider quasi-homogeneous matrix factorisations, i.e. matrix factorisations

P : P1

p1

⇄
p0

P0 . (3.24)

together with representations ρi of C∗ on the modules Pi which are compatible with the

C[Xi]-action, such that the maps pi are quasi-homogeneous:

ρ0(λ)p1ρ
−1
1 (λ) = λq′p1 , ρ1(λ)p0ρ

−1
0 (λ) = λq−q′p0 for some q′ . (3.25)

In the same way as quasi-homogeneous superpotentials correspond to conformal field theo-

ries in the IR, quasi-homogeneous matrix factorisations correspond to conformal boundary

conditions in these CFTs, whereas matrix factorisations which are not quasi-homogeneous

undergo an effective RG-flow.5 We will be mostly interested in quasi-homogeneous matrix

factorisations.
4Although superpotentials are not renormalised, because of field redefinitions non-quasi-homogeneous

superpotentials effectively flow to quasi-homogeneous ones under the RG action.
5More details about this can be found in [22].
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3.3 B-type defects and matrix factorisations

We will now consider the situation where a Landau-Ginzburg theory with chiral superfields

Xi and a superpotential W1(Xi) is defined on the upper half plane, and a different Landau-

Ginzburg theory with superfields Yi and a superpotential W2(Yi) is defined on the lower half

plane. The two are separated by a defect on the real line. We would like to describe those

defects, which preserve B-type supersymmetry. For this we will indeed follow the same

strategy used for the characterisation of B-type boundary conditions in Landau-Ginzburg

models reviewed in section 3.2 above.

Again, only B-type supersymmetry preserves the B-type defect line. Exactly as in

the boundary case, the B-type supersymmetry variation of the action of the theory on the

UHP leads to a boundary term (3.10). The theory on the LHP gives a similar contribution,

which however, because of the different relative orientations of the boundary, has opposite

sign. Therefore, the total B-type supersymmetry variation of the action of the first Landau-

Ginzburg model on the UHP and the second one on the LHP is given by

δBS = δBSD + δBSF

δBSF = i

∫
dx0dθ

(
ǭ(W1 − W2) − ǫ(W̄1 − W̄2)

)
. (3.26)

Just as in the case of boundaries, δBSD can be compensated by an appropriate boundary

term and δBSF can be cancelled by introducing additional fermionic degrees of freedom

on the defect. The same reasoning as outlined in section 3.2 for the case of boundary

conditions leads to the conclusion that B-type defects between the two Landau-Ginzburg

models are characterised by matrix factorisations of the difference W = W1 − W2 of the

respective superpotentials. As in the boundary case such a matrix factorisation gives rise

to a defect contribution Qdef to the BRST-charge, which squares to W . Also the discussion

of equivalence and trivial matrix factorisations carries over directly from the discussion of

boundary conditions. Moreover, given two matrix factorisations P , P ′ of W , in the same

way as for boundary conditions, the cohomology H(P,P ′) of the BRST-operator induced

by Qdef represents the space of topological defect changing fields (topological closed strings

twisted by the two defects). Note however that defects carry more structure than boundary

conditions. Unlike boundaries, defects can form junctions where more than two defects

meet, and there are fields localised on these junctions (topological closed strings twisted

by more than two defects). We will come back to this point later.

Before discussing more of the structure of defects in Landau-Ginzburg models, we

would like to remark that the conclusion that B-type defects between two Landau-Ginzburg

models are characterised by matrix factorisation of the difference of their superpotentials

is indeed consistent with the folding trick. As alluded to in section 2, the folding trick

relates defects between two two-dimensional theories C1 and C2 to boundary conditions in

the product theory C1 ⊗ C2, where C2 is the theory C2 with left and right moving sectors

interchanged. Folding the Landau-Ginzburg model with superpotential W2 from the LHP

to the UHP maps x± 7→ x∓ and likewise θ± 7→ θ∓. In particular, it maps the D-term of

the theory on the LHP to the corresponding D-term on the UHP, while the F-term changes

– 12 –
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Figure 1: Landau-Ginzburg models with superpotentials W1 and W2 on the upper half plane

separated by a defect (dashed line). Taking the defect to the boundary (y → 0), one obtains a new

boundary condition on the real line.

sign6

SLHP =

∫ 0

−∞
dx

∫ ∞

−∞
dtd4θK(Yi, Ȳi) +

∫ 0

−∞
dx

∫ ∞

−∞
dt

∫
dθ+dθ−W2(Yi) (3.27)

7→
∫ ∞

0
dx

∫ ∞

−∞
dtd4θK(Yi, Ȳi) −

∫ ∞

0
dx

∫ ∞

−∞
dt

∫
dθ+dθ−W2(Yi) .

The theory on the UHP obtained after folding up the W2-Landau-Ginzburg model from the

LHP is the Landau-Ginzburg model with chiral superfields Xi and Yi whose Kähler poten-

tial is just the sum of the Kähler potentials of the individual models, while its superpotential

is the difference W = W1−W2 of their superpotentials. As discussed in section 3.2, B-type

boundary conditions in this model are indeed characterised by matrix factorisations of W ,

which according to the folding trick then carries over to B-type defects between Landau-

Ginzburg models with superpotentials W1 and W2. Thus, the folding trick provides an

alternative derivation for the fact that B-type defects between Landau-Ginzburg models

can be described by matrix factorisations of the difference of their superpotentials.

Note that if W1 and W2 are quasi-homogeneous with respect to some C∗-action, then

so is W1(Xi)−W2(Yi). As for boundary conditions, the corresponding quasi-homogeneous

matrix factorisations give rise to conformal defects in the IR CFT.

4. Defect operation in Landau-Ginzburg models

Having identified B-type defects between Landau-Ginzburg models as matrix factorisations,

one can make use of this rather elegant description to study properties of these defects.

For instance, one can investigate situations in which both defects and boundaries, or in

which various defects are present.

6The measure d4θ appearing in the D-term is parity invariant, whereas the measure dθ+dθ− in the

integral over chiral superspace changes sign.
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As discussed in section 2, upon topological twisting, defects preserving the appropriate

supersymmetries become topological. This means that correlation functions in the presence

of such defects in the topologically twisted theory do not change when the defects are shifted

on the world sheet. In particular, one can bring defects on top of each other or onto world

sheet boundaries. Note that for generic (even supersymmetric) defects in the untwisted

theory this is not possible. Only purely transmissive defects can be shifted in the untwisted

models, and correlation functions diverge when two non-topological defects approach each

other, or such a defect approaches a world sheet boundary. These singularities however

disappear upon topological twisting. Therefore, in the B-twisted theory one can bring two

B-type defects together to obtain another one, and one can bring a B-type defect on top

of a boundary satisfying B-type boundary conditions to obtain a new boundary condition.

That means, B-type defects can be composed and act on B-type boundary conditions in

the twisted models. It is this composition of B-type defects in Landau-Ginzburg models

and their action on B-type boundary conditions which we would like to describe in this

section.

4.1 Composition of defects and action on boundary conditions

Let us start with the action of defects on boundary conditions. For this consider a theory

on the upper half plane consisting of a Landau-Ginzburg model with chiral superfields Xi

and superpotential W1(Xi) defined on the domain R+iR>y, and a Landau-Ginzburg model

with chiral superfields Yi and superpotential W2(Yi) on the domain R+iy (c.f. figure 1). The

two domains are separated by a B-type defect at R+ iy defined by a matrix factorisation of

W (Xi, Yi) = W1(Xi) − W2(Yi), and we impose B-type boundary conditions on R specified

by a matrix factorisation of W2(Yi). Let us denote the respective defect and boundary

BRST-charges by Qdef and Qbd. They satisfy Q2
def = (W1 − W2), Q2

bd = W2. What

happens when the defect is moved onto the boundary, i.e. when y → 0 is that in the limit,

both defect and boundary fermions πdef
i , π̄def

i and πbd
i , π̄bd

i together with Qdef and Qbd are

now defined on the world sheet boundary R. The new boundary condition on R created by

moving the defect on top of the original boundary condition has boundary BRST-charge

Q′
bd = Qdef + Qbd . (4.1)

Since Qbd and Qdef anti-commute,

(
Q′

bd

)2
= Q2

def + Q2
bd = W1(Xi) − W2(Yi) + W2(Yi) = W1(Xi) (4.2)

and therefore Q′
bd is indeed a BRST-charge of a B-type boundary condition in a Landau-

Ginzburg model with superpotential W1. Note however that Q′
bd still involves the chiral

superfields Yi of the Landau-Ginzburg model squeezed in between defect and boundary. In

the limit, they are promoted to new boundary degrees of freedom.

In terms of matrix factorisations this can be formulated as follows. Let

P : P1

p1

⇄
p0

P0 , p1p0 = (W1(Xi) − W2(Yi))idP0 , p0p1 = (W1(Xi) − W2(Yi))idP1

(4.3)
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be the matrix factorisation of W (Xi, Yi) = W1(Xi) − W2(Yi) representing the defect at

R+ iy, and let the original boundary condition on R correspond to the matrix factorisation

Q : Q1

q1

⇄
q0

Q0 , q1q0 = W2(Yi)idQ0 , q0q1 = W2(Yi)idQ1 (4.4)

of W2(Yi). The new boundary condition arising on R in the limit y → 0 is given by the

tensor product matrix factorisation

Q′ : Q′
1 =

(
P1 ⊗C[Yi] Q0

)
⊕

(
P0 ⊗C[Yi] Q1

) q′1
⇄

q′0

Q′
0 =

(
P0 ⊗C[Yi] Q0

)
⊕

(
P1 ⊗C[Yi] Q1

)

with q′1 =

(
p1 −q1

q0 p0

)
, q′0 =

(
p0 q1

−q0 p1

)
. (4.5)

Since Q′ represents a B-type boundary condition in the Landau-Ginzburg model with chiral

superfields Xi and superpotential W1(Xi), it has to be regarded as a matrix factorisation

over C[Xi]. However, by construction, the Q′
i are really free C[Xi, Yi]-modules, therefore in

particular free C[Xi]-modules of infinite rank, which means that the matrix factorisation

Q′ defined by (4.5) is a matrix factorisation of infinite rank over C[Xi].

Thus, moving a B-type defect on top of a B-type boundary, one obtains a boundary

condition defined by a matrix factorisation of infinite rank. This is due to the new boundary

degrees of freedom arising from the bulk fields Yi of the Landau-Ginzburg model squeezed

in between boundary and defect.

As it turns out, this is only an artifact of the construction. The matrix factorisa-

tions (4.5) obtained from finite rank matrix factorisations P and Q are always equivalent

up to trivial matrix factorisations to finite rank matrix factorisations of W1(Xi). That

Q′ = P ⊗ Q is of infinite rank is entirely due to the appearance of spurious trivial matrix

factorisations (brane-anti-brane pairs) which are physically irrelevant. Extracting the re-

duced finite rank matrix factorisation from it is the non-trivial part of the analysis of the

action of B-type defects on B-type boundary conditions in topological Landau-Ginzburg

models. In section 4.2 below we will present an argument why the matrix factorisations Q′

can always be reduced to finite rank, and we will discuss a method to extract the reduced

matrix factorisations. Explicit examples will be analysed in section 6.

Before turning to a discussion of the composition of B-type defects, let us remark that

the representation of the action of B-type defects on B-type boundary conditions in terms

of the tensor product (4.5) is also very natural from the point of view of the topological

spectra. As explained in section 3.3 the topological defect changing spectra between two

B-type defects represented by matrix factorisations P ′ and P of W = W1 −W2 is given by

the BRST-cohomology H∗(P ′, P ).

Now, for P ′ one can in particular choose a tensor product P ′ = R ⊗ Q̄ of matrix fac-

torisations R of W1 and Q̄ of −W2. (Given a matrix factorisation Q of W2, we denote by

Q̄ the matrix factorisation of −W2 obtained by q1 7→ −q1.) Such a tensor product matrix

factorisation in fact represents a purely reflexive defect, i.e. a tensor product of boundary

conditions in the two Landau-Ginzburg models. Therefore, the topological cylinder ampli-

tude with defects corresponding to P ′ and P inserted along the cylinder, is in fact nothing
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P

R

Q

PQ R Q’ R

Figure 2: From left to right: 1) The configuration with defects P and P ′ = Q̄⊗R, 2) open strings

between boundary conditions R and Q, twisted by the defect P , 3) As a limit of 2) one obtains

open strings between a new boundary condition Q′ = Q ⊗ P and R.

but the topological amplitude on a strip with boundary conditions corresponding to Q and

R along the boundaries, and a defect corresponding to P inserted between them. Hence,

for P ′ = R ⊗ Q̄ the spectrum H∗(P ′, P ) in fact also represents the spectrum of topolog-

ical open strings between the D-branes corresponding to R and Q twisted by the defect

corresponding to P . Moreover, since in the topologically twisted theory B-type defects

are topological, the spectrum should not change when moving the defect. In particular,

it should not change, when bringing the defect on top of one of the boundaries, the one

corresponding to Q say. From this it follows that the spectrum H∗(P ′, P ) should indeed

also describe the spectrum of topological open strings between the D-brane corresponding

to R on one side and the D-brane described by Q′ arising from bringing the defect P onto

the boundary condition Q on the other:

H∗(P ′ = R ⊗ Q̄, P ) ∼= H∗(R,Q′) . (4.6)

But from the construction of the BRST-operator, it is easy to see that indeed

H∗(R ⊗ Q̄, P ) ∼= H∗(R,P ⊗ Q) , (4.7)

which shows that the tensor product factorisation Q′ = P ⊗ Q has the spectrum expected

from the matrix factorisation representing the boundary condition obtained by moving the

defect described by P onto the boundary with boundary condition Q.

Completely analogously to the action of B-type defects on B-type boundary conditions

one can describe the action of them on other B-type defects, i.e. their composition. On

the level of matrix factorisation, the latter is also represented by taking the tensor product

of the matrix factorisations representing the defects which are being composed. For this

replace in the discussion above the matrix factorisation (4.4) by a matrix factorisation of

W2(Yi)−W3(Zi) over C[Yi, Zi] representing a defect between the Landau-Ginzburg models

with superpotentials W2(Yi) and W3(Zi) respectively. The tensor product (4.5) then gives

rise to an infinite rank matrix factorisation of W1(Xi) − W3(Zi) representing the defect

emerging as the composition of the two defects. As in the case of the action on boundary

conditions it is in fact equivalent modulo trivial matrix factorisations to a finite rank one,

and also for the analysis of the composition of defects the challenge lies in the reduction of

the infinite rank tensor product matrix factorisation to finite rank.
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We would like to close the general discussion of composition of B-type defects in

Landau-Ginzburg models and their action on B-type boundary conditions with the follow-

ing remark. As pointed out in section 3.3, one fundamental difference between boundary

conditions and defects is the possibility of the latter to form junctions, which also carry

fields. The discussion above in fact suggests a simple method to calculate the topological

spectra of fields localised on the junctions formed by n B-type defects in Landau-Ginzburg

models. Namely, let W1, . . . ,Wn, Wn+1 = W1 be superpotentials, and for 1 ≤ i ≤ n let P i

be matrix factorisations of Wi − Wi+1 representing B-type defects between the respective

Landau-Ginzburg models. To calculate the topological spectrum H∗(P 1, . . . , Pn) of fields

on the junction formed by these defects (topological closed strings twisted by all of them)

we note that as above, the topological spectra should not change when shifting the defects.

So in particular, we can bring the last n−1 of them on top of each other, and the spectrum

of fields on the junction is identical to the spectrum of defect changing fields between the

defect represented by P 1 and the one obtained by composing the defects associated to P i

with i > 1. Since the latter is represented by the matrix factorisation P 2 ⊗ . . . ⊗ Pn one

obtains

H∗(P 1, . . . , Pn) ∼= H∗(P̄ 1, P 2 ⊗ . . . ⊗ Pn) . (4.8)

4.2 Defect operation and matrix factorisations

In the section 3.3 we have argued that similarly to B-type boundary conditions, also B-type

defects in Landau-Ginzburg models can be described by means of matrix factorisations.

We have explained that in this formulation, the action of these defects on B-type boundary

conditions and defects has a simple realisation in terms of the tensor product (4.5) of the

respective matrix factorisations. As was pointed out in the previous section, the tensor

product matrix factorisations obtained in this way are of infinite rank however. Here we

will argue that they indeed are always equivalent to matrix factorisations of finite rank.

That means, it is always possible to reduce them to matrix factorisations of finite rank by

splitting off infinitely many trivial matrix factorisations. It is this reduction which is the

non-trivial part in the analysis of the action of B-type defects, and we will discuss a method

to deal with it below. We will focus on the action of B-type defects on B-type boundary

conditions, but the discussion of the composition of defects works exactly analogously.

The basic idea we employ to show that the tensor product matrix factorisations ob-

tained are equivalent to finite rank factorisations is to identify the reduced rank as the

dimension of a certain BRST-cohomology group, which can be calculated directly from

the infinite rank representative. (In a geometric context, one would want to count the

bosonic open strings between the D-brane under consideration and the basic D-brane with

Neumann boundary conditions in all directions, carrying only one type of charge.) This

argument only works in the case that W and the matrix factorisations under consideration

are quasi-homogeneous.7 Since we are mostly interested in quasi-homogeneous matrix fac-

7Indeed it also works for non-homogeneous matrix factorisations defined over Laurent rings instead of

polynomial rings.
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torisations, we will restrict the discussion to this case, but we believe that the statement

also holds in the general situation.

Let us start the discussion by the following remark. Consider a matrix factorisation

Q : Q1

q1

⇄
q0

Q0 , q1q0 = W (Xi)idQ0 , q0q1 = W (Xi)idQ1 (4.9)

of W (Xi) over the ring C[Xi]. Now suppose that q1 or q0 have an entry which is a unit

(i.e. an invertible element) in C[Xi]. It is easy to see that in this case there is an equivalence

(ui, vi = u−1
i ) as in (3.20) which brings Q into the form Q ∼= Q′ ⊕ T , where T is the trivial

matrix factorisation (3.22). In particular, Q can be reduced to Q ∼= Q′. This can be done

until there are no more unit entries in the matrix factorisation, in which case no trivial

matrix factorisation can be split off anymore in this way. Let us assume this to be true for

the matrix factorisation Q and let N be its rank. Under these circumstances, the rank of

Q can be calculated as the dimension of the BRST-cohomology H0(Q,S)

rank(Q) = dimH0(Q,S) , (4.10)

where S is the tensor product8 of the rank-one factorisations P i defined by pi
1 = Xi,

pi
0 = Bi(Xi) with W =

∑
i XiBi. This can be seen as follows. The Koszul resolution

of the module M = C[Xi]/(Xi) regarded as a C[Xi]-module can be used to construct

an R := C[Xi]/(W )-free resolution of M , which after l steps turns into the two-periodic

resolution of coker(p1) defined by p1 and p0. Here, l = n is the number of variables Xi if

n is even, and l = n − 1 if n is odd. Thus,

ExtiR(·, coker(p1)) ∼= Exti+l
R (·,M) . (4.11)

This has been discussed in detail in section 4.3 of [23]. Using the general fact [23] that for

all i > 0

H0(P,Q) ∼= Ext2i
R(coker(p1), coker(q1)) , H1(P,Q) ∼= Ext2i−1

R (coker(p1), coker(q1)) ,

one obtains

H0(Q,S) ∼= Ext2+l
R (coker(q1),M) . (4.12)

This Ext-group can be calculated by means of the two-periodic resolution

. . .
q1−→ RN q0−→ RN q1−→ RN −→ coker(q1) −→ 0 . (4.13)

Namely, it is given by the cohomology of the complex obtained by applying the functor

HomR(·,M) to the resolution (4.13). Since the qi (in a certain basis) only have non-

unit homogeneous entries, the differentials of this complex all vanish, and therefore the

cohomology in every degree is given by MN . In particular, the dimension of the cohomology

groups is N , the rank of Q.

8As in the definition of Dg in (5.9) below, the rank-one factors are not necessarily unique, but the

resulting tensor product matrix factorisation is up to equivalence.
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But now, dimH0(Q,S) does not change when one adds trivial matrix factorisations

to Q. This implies that dimH0(Q,S) indeed calculates the reduced rank of the matrix

factorisation Q, i.e. the rank of the matrix factorisation obtained from Q by splitting off

all trivial matrix factorisations in the way described above.9

We will use this to show that the reduced rank of tensor product matrix factorisations

representing the boundary conditions obtained by applying a B-type defect to a B-type

boundary condition is always finite (assuming that the factor matrix factorisations are of

finite rank). So let P as in (4.3) represent a B-type defect between two Landau-Ginzburg

models, Q as in (4.4) a B-type boundary condition in one of them, and Q′ defined in (4.5)

their tensor product. To show that the reduced rank of Q′ is finite we again make use

of (4.12). As above we use the resolution (4.13) for Q′ to compute the Ext-groups, which

are then given by the cohomology of the sequence

. . .
eq′0−→ (M ′)N

′ eq′1−→ (M ′)N
′ eq′0−→ (M ′)N

′ eq′1−→ . . . (4.14)

Here N ′ denotes the rank of Q′, M ′ = C[Xi, Yi]/(Xi) and q̃′i are obtained from the q′i by

setting Xi = 0. But similarly as in the discussion of (4.7), one recognises this complex as

the one computing H(Q, P̃ ), where P̃ is the matrix factorisation over C[Yi] obtained from

P by setting Xi = 0. It is in particular a finite rank matrix factorisation of W2(Yi). We

therefore obtain

H0(Q′ = P ⊗ Q,S) ∼= Hi(Q, P̃ ) , (4.15)

for some i, where the latter is the BRST-cohomology between two finite rank matrix

factorisations of W2(Yi), which in particular is finite dimensional. Hence the reduced rank

of Q′ is finite.

Having established that Q′ can be reduced to a matrix factorisation of finite rank,

we would now like to comment on how to obtain a reduced form. To find the explicit

equivalence on the level of matrix factorisations is difficult in general. (A very simple

example is discussed in appendix B.) On the level of modules, what one has to do is to

regard coker(q′1) as an R-module and split off all free summands. A trick, which will prove

useful in the examples presented in section 6 is the following. Instead of analysing coker(q′1)

one can consider the module V = coker(p1 ⊗ idQ0 ,−idP0 ⊗ q1). This module has the R-free

resolution

. . .
q′1−→ Q′

0

q′0−→ Q′
1

q′1−→ Q′
0

q′0−→ Q′
1

(p1⊗idQ0
,−idP0

⊗q1)−→ P0 ⊗ Q0 −→ V −→ 0, (4.16)

which after two steps turns into the R-free resolution of coker(q′1) obtained from the matrix

factorisation Q′. Therefore, instead of reducing coker(q′1), we can just as well reduce V

and take the matrix factorisation which can be obtained from a resolution of the reduced

module by chopping off the first two terms. Indeed, in the examples presented in section 6

this trick will prove to be very useful, because V itself will already be of finite rank.

Completely analogously to the action of B-type defects on B-type boundary condi-

tions, the composition of B-type defects can be described. For this replace the matrix

9A priori it might be possible that Q is equivalent to a matrix factorisation with even smaller rank.
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factorisation (4.4) with a matrix factorisation of W2(Yi)−W3(Zi) over C[Yi, Zi] represent-

ing a defect between the Landau-Ginzburg model with superpotential W2(Yi) and the one

with superpotential W3(Zi). The tensor product (4.5) then gives rise to an infinite rank

matrix factorisation of W1(Xi) − W3(Zi), which as in the case of the action on boundary

conditions is in fact equivalent to a finite dimensional one. Thus, from B-type defects

between Landau-Ginzburg theories with superpotentials W1(Xi) and W2(Yi), and W2(Yi)

and W3(Zi) respectively, one obtains one between the Landau-Ginzburg theories with su-

perpotentials W1(Xi) and W3(Zi).

5. Symmetry defects

If a two-dimensional field theory exhibits symmetries, i.e. automorphisms of its Hilbert

space which commute with energy and momentum operators, then these give rise to topo-

logical defects. The corresponding defect operators are simply given by the automorphisms

themselves, and the closed string sectors twisted by such defects are the ordinary twisted

sectors known from orbifold constructions.10 Obviously, these defects compose according

to the symmetry group of the theory, and in particular every such defect has an inverse.

They are group-like defects as discussed in [6].

For a Landau-Ginzburg model with chiral superfields Xi and superpotential W there

is a simple class of symmetries, whose action is defined by linear and unitary11 action on

the superfields Xi:

Xi 7→ g(Xi) , such that W (g(Xi)) = W (Xi) . (5.1)

We will denote the group of these transformations by Γ. The corresponding defects can

easily be described by means of gluing conditions of the chiral superfields along the defect.

Let us consider a Landau-Ginzburg model with superpotential W on the full plane with

such a defect along the real line. Denote by Xi and Yi the chiral superfields on the UHP

and the LHP respectively. Then for every g ∈ Γ as above, one can define a defect Dg by

imposing the gluing conditions

(Xi(x + iy) − g(Yi)(x − iy)) → 0 for y → 0 (5.2)

on the chiral superfields on the UHP and LHP along the real line. Obviously, these gluing

conditions cancel the supersymmetry variation (3.26) of the bulk F-term in the presence

of the defect without the introduction of any additional degrees of freedom. Moreover,

these defects are also compatible with A-type supersymmetry. To see this, consider the

full supersymmetry variation (3.5) of the F-term of the theory on the upper half plane.

The result is

δS = i

∫

R

dx0
(
ǭ+ω

(1)
+ − ǭ−ω

(1)
− + ǫ−ω̄

(1)
− − ǫ+ω̄+

(1)
)
. (5.3)

where we have expanded the chiral superfield W1 as

W1 = w(1)(y±) + θαω(1)
α (y±) + θ+θ−F (1)(y±), (5.4)

10In fact, also dualities between different theories can give rise to such defects.
11The standard Kähler potential K =

P

i
X̄iXi has to be invariant.
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This can be compensated by the variation of a theory defined on the lower half plane if

(ω
(1)
± (x + iy) − ω

(2)
± (x − iy)) → 0 , (5.5)

(ω̄
(1)
± (x + iy) − ω̄

(2)
± (x − iy)) → 0

modulo total derivatives in the limit y → 0. As one easily checks, these conditions are

satisfied in the case that the chiral superfields obey the gluing relations (5.2). The latter

furthermore imply gluing conditions

Q
(1)
± = Q

(2)
± , Q̄

(1)
± = Q̄

(2)
± (5.6)

for the Landau-Ginzburg supercharges (3.6) along the defect line, which ensures that indeed

the full N = (2, 2) supersymmetry is preserved.

Since the defects are topological, one can compose them with the obvious result

DgDg′ = Dgg′ . (5.7)

As mentioned above the defect spectra obtained from defects defined by group actions

are nothing but the twisted spectra usually discussed in the context of the corresponding

orbifold models. We refer to [24, 25], for a discussion of the twisted sectors in Landau-

Ginzburg orbifolds.

Even though these defects have a very nice and simple description not involving new

degrees of freedom on the defect, we would like to make contact with the discussion of the

previous sections and show how to formulate them in terms of matrix factorisations. Here,

we can take inspiration from a similar discussion in the context of boundary conditions. B-

type boundary conditions for Landau-Ginzburg models had first been introduced in [26, 18]

without the introduction of additional boundary degrees of freedom. After the discovery

that matrix factorisations provide more general boundary conditions, it was proposed in [27,

28] that the original boundary conditions of [26, 18] can indeed be realised as matrix

factorisations, having one linear factor representing the gluing conditions of the chiral fields

along the boundary. This suggests that the group like defects discussed above should be

realised as linear matrix factorisations as well. Indeed, for every g as above W (Xi)−W (Yi)

can be factorised as12

W (Xi) − W (Yi) =
∑

j

(Xj − g(Yj))Aj(Xi, Yi) , (5.8)

for some polynomials Aj(Xi, Yi), generalising the prescription for g = 1 in [29]. We propose

that the defects Dg can then be represented by the tensor product matrix factorisations

Dg =
⊗

i

P i (5.9)

of the rank-one factorisations defined by

pi
1 = (Xi − g(Yi)) , pi

0 = Ai(Xi, Yi) . (5.10)

12This factorisation may not be unique, but the matrix factorisations (5.9) resulting from different choices

of Aj in (5.8) are equivalent.
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Let us gather some evidence for this proposal. It is indeed very easy to verify that the matrix

factorisations (5.9) lead to the desired action on B-type defects and boundary conditions.

To see this, consider a matrix factorisation Dg as defined above and a matrix factorisation

Q which is either a matrix factorisation of W (Yi) corresponding to a B-type boundary

condition, or a matrix factorisation of W (Yi)−W (Zi) representing another defect. We set

R := C[Xi]/(W ) in the first, R := C[Xi, Zi]/(W (Xi) − W (Zi)) in the second case.

The result of the action of Dg on Q is given by the matrix factorisation Dg ⊗ Q. To

reduce this, we employ the same trick used to get (4.12). Namely, the module

M := coker((X1 − g(Y1))idQ0 , . . . , (Xn − g(Yn))idQ0 , q1) (5.11)

has an R-free resolution which after l = n + 1 for n odd, and l = n for n even steps turns

into the matrix factorisation Dg⊗Q. (This resolution is related to the Koszul complex, and

is discussed in a similar context in section 4.3 of [23].) Therefore the matrix factorisation

Dg⊗Q is equivalent to the matrix factorisation into which the R-free resolution of M turns

after l steps. But M is nothing else than

M ∼= coker(q1(Yi = g−1(Xi))) (5.12)

which obviously has a completely two-periodic resolution, namely the matrix factorisation

Q(Yi = g−1(Xi)) over R. Thus, Dg acts on matrix factorisations by setting Yi = g−1(Xi).

In particular one obtains the desired composition of the symmetry defects Dg, because

Dg ⊗ Dg′ is equivalent to Dgg′ .

Also the analysis of defect spectra supports the identification of the matrix factori-

sations (5.9) with group like defects. The spectra associated to the symmetry defects do

indeed agree with the spectra of bulk fields twisted by the respective group elements as

calculated in [25, 24]. More precisely, one can show that the defect spectra H∗(Dg,D1)

are isomorphic to the g-twisted bulk Hilbert spaces.13 For instance, in the case of a

Landau-Ginzburg model with a single chiral superfield X it is indeed very easy to see by

direct calculation that H∗(D1,D1) is purely bosonic and isomorphic to the bulk chiral ring

C[X]/(∂W ), i.e. the untwisted bulk Hilbert space. For g 6= 1, on the other hand there are

no bosons in the defect spectra H∗(Dg,D1), and only a single fermion ω, corresponding to

the unique ground state in the g-twisted sector of the orbifold.

This easily generalises to tensor products of this situation (in particular the g act

diagonally on the Xi), in which case each tensor factor contributes to H∗(Dg,D1) either

polynomials in C[Xi]/(∂iW ) in case Xi is g-invariant, or a fermion ωi, if it is not. Hence,

H∗(Dg,D1) is spanned by polynomials in g-invariant variables multiplied by one fermion

for each variable which is not g-invariant. This can be written as

H∗(Dg,D1) ∼= C[Xg−inv
i ]/(∂i(Wg−inv))

∏

g(Xj )6=Xj

ωj , (5.13)

with Wg−inv the polynomial obtained from W by setting all non-g-invariant variables to

zero. It is easily recognised as the g-twisted orbifold sector obtained in [24, 25].

13By means of the composition of the Dg discussed above H∗(Dg′ , Dg) ∼= H∗(Dg′g−1 , D1).
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Indeed, the statement that the defect spectra H∗(Dg,D1) are isomorphic to the g-

twisted sectors is true in the general situation. The proof for the general case is presented

in appendix A.14

6. Defects in minimal models

Up to now we have discussed symmetry defects in arbitrary Landau-Ginzburg models. The

matrix factorisations describing these defects, their action on B-type boundary conditions

and their composition properties have been discussed in section 5. Here, we would like

to discuss more general defects in Landau-Ginzburg models with one chiral superfield

and superpotential W (X) = Xd, and in their closely related cousins, theories with one

additional superfield and superpotential W (X) = Xd + Z2. The bulk chiral rings of these

two theories are equivalent, but there are differences in the D-brane spectra, as discussed

in [15]. Indeed the two theories can be regarded as Z2 orbifolds of each other, and therefore,

adding a further square leads again to the initial theory. On the level of matrix factorisation

this property is known as Knörrer periodicity.

In the IR these models become respectively N = 2 superconformal minimal models

and Z2-orbifolds thereof. Both these models share the same Hilbert space, but differ in

the action of (−1)F . They are well understood conformal field theories in which conformal

defects can be explicitly studied.

In 6.1, we will construct and analyse defects within the Landau-Ginzburg framework

presented in the previous sections. In 6.2 we will make contact with the CFT-analysis. We

will restrict our attention to defects between one and the same Landau-Ginzburg model, in

which case constructions for the corresponding conformal defects are known. The case of

defects between Landau-Ginzburg models with different superpotentials will be investigated

in [30].

6.1 Landau-Ginzburg approach

Let us start with the case W (X) = Xd. The model with superpotential W (X,Z) = Xd+Z2

will be discussed later in Subsection 6.1.4. There are certain obvious candidates for defect

matrix factorisations of W (X)−W (Y ) = Xd −Y d. On the one hand, these are the tensor

product matrix factorisations

Ti,j : ti,j1 =

(
Xi Y j

Y d−j Xd−i

)
, ti,j0 =

(
Xd−i −Y j

−Y d−j Xi

)
. (6.1)

On the other hand there are “permutation type” matrix factorisations of the form

P d
I : pI

1 =
∏

a∈I

(X − ηaY ) , pI
0 =

∏

a∈{0,...,d−1}−I

(X − ηaY ) , (6.2)

14That the spaces H∗(D1, D1) for general W coincide with the bulk-chiral rings has also been observed

in [29]
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where η is an elementary dth root of unity and I is a strict subset of {0, . . . , d − 1}.
These defects generalise the symmetry defects discussed in section 5. Namely, the Landau-

Ginzburg model with superpotential W = Xd allows for the operation of a symmetry group

Zd on the superfield

i ∈ Zd : X 7→ ηiX , (6.3)

and the corresponding defect matrix factorisations Di agree with the matrix factorisations

P{i} of (6.2).

6.1.1 Composition of permutation type matrix defects

The action of the permutation type matrix factorisations P{i} has already been discussed

in section 5. Here we would like to analyse the composition of defects represented by PI

for arbitrary I. As it will turn out, we will only have to analyse the action of PI with

|I| = 2, because successively composing such PI one can generate all other PI as well.

Considerations will be restricted to the case where I is a set of successive integers modulo

d, because these defects have a simple representation in the respective conformal field

theories.

As a warm up, let us consider the composition of two defects corresponding to matrix

factorisations PI with |I| = 2, P{m,m+1} and P{m′,m′+1}. Using the trick described in

section 4.2, the result of this composition is the B-type defect represented by the matrix

factorisation associated to the R = C[X,Z]/(Xd − Zd)-module

M := C[X,Y,Z]/((X − ηmY )(X − ηm+1Y ), (Y − ηm′

Z)(Y − ηm′+1Z)) . (6.4)

In M we have the following relations:

Y 2+i − αXY 1+i − βX2Y i = 0 (6.5)

Y 2+i − α′ZY 1+i − β′Z2Y i = 0 ,

where we abbreviated

α := η−m + η−m−1 , β := −η−2m−1 , (6.6)

α′ := ηm′

+ ηm′+1 , β′ := −η2m′+1 .

From this it follows in particular that the submodules of M built on Y i for i ≥ 2 are in

fact submodules of those built on 1 and Y , so the task is to understand the latter, i.e. the

relations in them. To start note that from (6.5) it follows that

0 =
(
αX − α′Z

)
Y +

(
βX2 − β′Z2

)
(6.7)

=
(
αX − α′Z

)(
Y +

β

α2

(
αX + α′Z

))

︸ ︷︷ ︸
=:e1

= 0 ,

where use was made of (6.6). In fact, there are no further relations in the submodule built

on e1, so that the latter is just given by (α′/α = ηm+m′+1)

R/(X − ηm+m′+1Z) . (6.8)
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To determine the remaining part of M , we note that (6.5) also gives rise to (6.7) multiplied

by Y . Substituting the first of the equations (6.5) into the latter, one obtains, using in

particular (6.7) and (6.6)

(X − ηm+m′

Z)(X − ηm+m′+1Z)(X − ηm+m′+2Z) = 0 , (6.9)

which is the only relation in the submodule built on e0 := 1 ∈ M . Therefore

M ∼= R/(X − ηm+m′+1Z) ⊕ R/(X − ηm+m′

Z)(X − ηm+m′+1Z)(X − ηm+m′+2Z) , (6.10)

and the defect obtained by composing the defects corresponding to the matrix factorisations

P{m,m+1} and P{m′,m′+1} is represented by the sum

P{m,m+1} ∗ P{m′,m′+1} = P{m+m′+1} ⊕ P{m+m′,m+m′+1,m+m′+2} . (6.11)

In case d = 3 the second summand is trivial, if d > 3, the composition of the two PI with

|I| = 2 generates a PI with |I| = 3.

Let us now consider the more general case, namely the composition of P{m,m+1} and

P{m′,...,m′+a}. The result of this composition is the matrix factorisation associated to the

R-module

M = C[X,Y,Z]/

(
(X − ηmY )(X − ηm+1Y ),

a∏

i=0

(Y − ηm′+iZ)

)
. (6.12)

As in the special case discussed above, because of the quadratic relation

(X − ηmY )(X − ηm+1Y ) = Y 2 − (η−m + η−m−1)XY + η−2m−1X2 = 0 , (6.13)

we only have to consider the submodules built on 1 and Y . To obtain the relations in them,

by means of (6.13) we eliminate all Y i with i > 1 from

F (Y,Z) =
a∏

i=0

(Y − ηm′+iZ) = 0 (6.14)

to obtain a relation of the form

Y P (X,Z) + Q(X,Z) = 0 . (6.15)

Multiplying it by Y and again using (6.13) gives rise to another relation

0 = Y 2P (X,Z) + Y Q(X,Z) (6.16)

= Y
(
(η−m + η−m−1)XP (X,Z) + Q(X,Z)

)
− η−2m−1X2P (X,Z) .

Again multiplying by Y one obtains a linear combination of (6.15) and (6.16), thus these

two are the only relations on the submodule built on 1 and Y .

Now, by construction

F (Y,Z = η−m′−m−iX) ∼
0∏

j=−a

(X − ηm+i−jY ) (6.17)
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contains (6.13) as a factor iff 1 ≤ i ≤ a, from which it follows that P (X,Z) and Q(X,Z)

have roots (X − ηm′+m+iZ) for 1 ≤ i ≤ a. Since P and Q have degree a and a + 1

respectively, it follows that

P (X,Z) ∼
a∏

i=1

(X − ηm′+m+iZ) , and Q(X,Z) = P (X,Z)q(X,Z) , (6.18)

where q is a polynomial of degree 1. Therefore relation (6.15) can be written as

P (X,Z)(Y + q(X,Z)) = 0 , (6.19)

and using this, relation (6.16) becomes

P (X,Z)
(
−η−2m−1X2 − (η−m + η−m−1)Xq(X,Z) − q2(X,Z)

)
︸ ︷︷ ︸

=:S(X,Z)

= 0 . (6.20)

It remains to determine the quadratic polynomial S(X,Z). For this we note that the

polynomials F (Y,Z = η−m′−mX) and F (Y,Z = η−m′−m−a−1X) contain factors (X−ηmY )

and (X − ηm+1Y ) respectively. In particular

0 = F (Y,Z = η−m′−mX)(X − ηm+1Y ) (6.21)

0 = F (Y,Z = η−m′−m−a−1X)(X − ηmY ) .

Making once again use of the fact that F = Y P + Q and the quadratic relation (6.13), one

obtains the equations

0 = η−mXP (X,Z = η−m′−mX) + Q(X,Z = η−m′−mX) (6.22)

0 = η−m−1XP (X,Z = η−m′−m−a−1X) + Q(X,Z = η−m′−m−a−1X) , (6.23)

which can be used to determine the linear polynomial q(X,Z) = µX + νZ. Namely

µ = −η−m 1 − ηa

1 − ηa+1
, ν = −ηm′+a 1 − η

1 − ηa+1
. (6.24)

Substituting q in the equation for S, one obtains

S(X,Z) ∼ (X − ηm+m′

Z)(X − ηm+m′+a+1Z) , (6.25)

and hence

M ∼= C[X,Z]/

(
a∏

i=1

(X − ηm+m′+i)

)
⊕ C[X,Z]/

(
a+1∏

i=0

(X − ηm+m′+i)

)
. (6.26)

Therefore,

P{m,m+1} ∗ P{m′,...,m′+a} = P{m+m′+1,...,m+m′+a} ⊕ P{m+m′,...,m+m′+a+1} . (6.27)

If d = a− 1 the second summand is trivial, otherwise the action of P{m,m+1} on a PI with

|I| = r generates a PI with |I| = r + 1, and we see that by composing PI with |I| = 2, we

can indeed generate all PI . Therefore, by means of associativity, (6.27) indeed determines

the composition of arbitrary permutation like defects. Using the fusion rules N of ŝu(2)d−2

one obtains:

P{m1,...,m1+l1} ∗ P{m2,...,m2+l2} =
⊕

l

N l
l1l2P{ 1

2
(l1+l2−l)+m1+m2,..., 1

2
(l1+l2+l)+m1+m2} . (6.28)
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6.1.2 Action of permutation type defects on boundary conditions

Using the results from the previous subsection, also the action of permutation type defects

on boundary conditions is completely determined by the action of the defects corresponding

to matrix factorisations P{m,m+1}. So let us investigate the action of such defects on

boundary condition represented by matrix factorisations

Ta : C[Y ]
Y a

⇄

Y d−a

C[Y ] . (6.29)

The resulting boundary condition is given by the matrix factorisation defined by the R =

C[X]/(W (X))-module

M := C[X,Y ]/((X − ηmY )(X − ηm+1Y ), Y a) . (6.30)

The relations on this module are

Y 2+i − (η−m + η−m−1)︸ ︷︷ ︸
=:α

XY 1+i + η−2m−1

︸ ︷︷ ︸
=:−β

X2Y i = 0 , Y a = 0 , (6.31)

and in particular the submodules built on Y i for i > 1 are submodules of the ones built

on 1 and Y . Therefore we only have to determine the relations on these two submodules.

From (6.31) we obtain

X2Y a−1 = 0 (6.32)

X

(
Y a−1 +

β

α
XY a−2

)
= 0 ,

and inductively:

Xi+2Y a−i−1 = 0 (6.33)

Xi

(
Y a−i −

∑i−1
j=0 ηj−m

∑i
j=0 ηj

XY a−i−1

)
= 0 .

In particular:

Xa+11 = 0 (6.34)

Xa−1

(
Y −

∑a−2
j=0 ηj−m

∑a−1
j=0 ηj

X

)
= 0

and therefore, as an R-module

M ∼= R/Xa−1R ⊕ R/Xa+1R . (6.35)

Thus, applying the defect corresponding to the matrix factorisation P{m,m+1} to the bound-

ary condition associated to Ta (0 < a < d) results in the boundary condition described by

the matrix factorisation

P{m,m+1} ∗ Ta = Ta−1 ⊕ Ta+1 . (6.36)

If a = 1 or a = d − 1 one of the summands is a trivial matrix factorisation. Using (6.28),

one can obtain the action of arbitrary PI to be

P{m,...,m+l} ∗ Ta =
⊕

b

N b
laTb . (6.37)
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6.1.3 Action of tensor product type defects

In this subsection we will discuss the action of tensor product (TP) type defects on bound-

ary conditions and other TP type defects. Let us start with the discussion of the application

of the defect corresponding to Ta,b on the boundary condition represented by Tβ. Indeed,

Ta,b ∗ Tβ =
(
Ta(X) ⊗ T̄b(Y )

)
⊗ Tβ(Y ) . (6.38)

Now, let us assume that the minimum m = min(b, β) satisfies m ≤ d−m. This can always

be achieved by shifting both Tb 7→ Tb[1] and Tβ 7→ Tβ[1], which does not affect (6.38).

Consider the case β = m. The matrix factorisation (6.38) is isomorphic (up to trivial

matrix factorisations) to the one arising from the resolution of the module

M = coker(ta,b
1 ⊗ id,−id ⊗ tβ1 ) (6.39)

= coker

(
xa yb −yβ 0

yd−b xd−a 0 −yβ

)

= coker

(
xa 0 −yβ 0

0 xd−a 0 −yβ

)

∼= C[X,Y ]/(Xa, Y β) ⊕ C[X,Y ]/(Xd−a, Y β) ,

where it was used that β ≤ b, d − b. Therefore for β < d − β, b, d − b

Ta,b ∗ Tβ =
(
T a ⊕ T d−a

)⊕β
= (T a ⊕ T a[1])⊕β . (6.40)

If b < β one can use the associativity of the tensor product of matrix factorisations to

obtain a module M with cokernel representation as in (6.39) with β and b interchanged.

(Also some irrelevant signs are different because one of the Tb, Tβ appearing in (6.38) has

a bar.) Thus, in the same way, one arrives at the result for arbitrary b and β:

Ta,b ∗ Tβ = (T a ⊕ T a[1])⊕min(b,β,d−b,d−β) . (6.41)

Analogously one can deal with the composition of TP like defects to obtain

Ta,b ∗ Tβ,γ = (Ta,γ ⊕ Ta,γ [1])⊕min(b,β,d−b,d−β) . (6.42)

Since Tβ,γ = Tβ(Y )⊗ T̄γ(Z) is a tensor product matrix factorisation, this result indeed can

be easily obtained from the action of Ta,b on boundary conditions, namely

Ta,b ∗ Tβ,γ = (Ta,b ∗ Tβ) ⊗ T̄γ , (6.43)

and this trick can in fact also be used to deduce the action of permutation type defects on

TP like defects from their action on boundary conditions:

PI ∗ Tβ,γ = (PI ∗ Tβ) ⊗ T̄γ . (6.44)
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6.1.4 W = Xd + Z2

Here we would like to extend the previous analysis to Landau-Ginzburg models with super-

potentials W = Xd+Z2. Defects between these models correspond to matrix factorisations

of Xd +Z2−Y d−U2. The obvious generalisations of the factorisations (6.2) are just tensor

products of the factorisations P d
I (X,Y ) of Xd−Y d and factorisations P 2

J (Z,U) of Z2−U2.

Obviously J can be chosen to consist either of 0 or 1, and these factorisations are symmetry

defects with respect to the Z2 generated by changing the sign of the respective superfield.

We denote the tensor products as

P±
I := P d

I (X,Y ) ⊗ P 2
{±1−1}(Z,U) . (6.45)

Note that not all of these factorisations are independent. Since the tensor product of

two shifted matrix factorisations is equivalent to the tensor product of the unshifted ones,

P [1] ⊗ Q[1] ∼= P ⊗ Q, we have

P±
I

∼= P∓
{0,...d−1}−I , (6.46)

and all these defects can be expressed in terms of P+
I only. This is expected from Knörrer

periodicity, which states that the category of matrix factorisations of a polynomial and that

one of the same polynomial to which two squares are added are equivalent. In particular,

the structure of defects in theories with superpotential W = Xd and W = Xd + Z2 should

coincide.15

Because of the tensor product structure, composition of these defects can easily be

reduced to the one of the tensor factors. Thus from (6.28) and the obvious Z2-composition

of the symmetry defects, one deduces

P σ
{m1,...,m1+l1} ∗ P ρ

{m2,...,m2+l2} =
⊕

l

N l
l1l2P

σρ

{ 1
2
(l1+l2−l)+m1+m2,..., 1

2
(l1+l2+l)+m1+m2}

. (6.47)

We would like to study how defects corresponding to these matrix factorisations act on

boundary conditions. Corresponding to matrix factorisations of Xd + Z2, the latter come

in two classes [15]. Firstly, there are the obvious tensor product matrix factorisations

Θa := T d
a (X) ⊗ T 2

1 (Z) , (6.48)

where as before

T d
a (X) : C[X]

Xa

⇄

Xd−a

C[X] . (6.49)

These factorisations are not “oriented” in the sense that Θa
∼= Θa[1] ∼= Θd−a. The action

of the defects P±
I on them can again be decomposed into the action of the respective tensor

factors and with (6.37) one obtains

P±
{m,...,m+l} ∗ Θa =

⊕

b

N b
laΘb . (6.50)

15Of course one can also study defects between Landau-Ginzburg models with superpotentials with W =

Xd and W = Xd + Z2, which would then correspond to matrix factorisations of Xd + Z2 − Y d. The

structure of these kinds of defects is different from the ones between models of the same type, but we will

refrain from discussing them here.
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For even d however the factorisations Θ d
2

are reducible. They split up

Θ d
2

∼= Ψ+ ⊕ Ψ− (6.51)

into the two additional rank-one factorisations

Ψ± : C[X,Z]
ψ±

1

⇄

ψ±
0

C[X,Z] , ψ±
1 =

(
X

d
2 ∓ iZ

)
, ψ±

0 =
(
X

d
2 ± iZ

)
. (6.52)

In contrast to the Θi, the Ψ± are oriented; they satisfy Ψ±[1] ∼= Ψ∓ ≇ Ψ±, and the action

of the defects associated to the P±
I on the corresponding boundary conditions is more

complicated. P±
{m} for instance is a symmetry defect and as discussed in section 5 acts on

any matrix factorisation by replacing

X 7→ η−mX , Z 7→ ±Z . (6.53)

In particular,

P σ
{m} ∗ Ψρ = Ψσρη

md
2 =

{
Ψσρ , m even

Ψ−σρ , m odd
. (6.54)

In view of the fact that also the P±
I with |I| > 2 are generated by the composition of those

with |I| ≤ 2 (c.f. (6.47)), we again only have to analyse the action of the P±
{m,m+1} on Ψ±

by hand. To do this, we note that the result of P σ
{m,m+1} ∗ Ψρ is the matrix factorisation

obtained from R = C[X,Z]/(Xd + Z2)-free resolutions of the module

M = C[X,Y,Z,U ]/
(
(Y

d
2 − iρU), (Z − σU), (X − ηmY )(X − ηm+1Y )

)
(6.55)

∼= C[X,Y,Z]/
(
(Y

d
2 − iσρZ), (X − ηmY )(X − ηm+1Y )

)
. (6.56)

Because of the quadratic relation (X − ηmY )(X − ηm+1Y ) = 0 in M , ith powers of Y with

i ≥ 2 can be expressed as

Y i = Pi(X) + Y Qi(X) . (6.57)

Inductively one easily finds that

Pi(X) = piX
i , pi = −η−(m+1)i+1(1 + η + . . . + ηi−2) , (6.58)

Qi(X) = qiX
i−1 , qi = η−(m+1)(i−1)(1 + η + . . . + ηi−1) .

Therefore, M collapses to a submodule of C[X,Z]⊕Y C[X,Z], and the only task is to find

the relations in it. These come from the relations

Y
d
2
−2X2 − ηm(1 + η)Y

d
2
−1X + iη2m+1σρZ = 0 , (6.59)

Y
d
2
−1X2 − iηm(1 + η)σρXZ + iη2m+1σρY Z = 0 , (6.60)

which are obtained by substituting Y
d
2 = iσρZ into Y i(X − ηmY )(X − ηmY ) = 0 for

i = d
2 − 2 and i = d

2 − 1 respectively. Using (6.57), (6.58) and the explicit form of the pi

and qi these equations can be written as
(
q d

2
−1X

d
2 + iη2m+1σρZ

)
+ Y

(
−η2m+1q d

2
X

d
2
−1

)
= 0 , (6.61)

(
p d

2
−1X

d
2
+1 − iηm(1 + η)σρXZ

)
+ Y

(
q d

2
−1X

d
2 + iη2m+1σρZ

)
= 0 . (6.62)
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Regarding C[X,Z]⊕ Y C[X,Z] as C[X,Z]2, M is isomorphic to the cokernel of the matrix

O =


 q d

2
−1X

d
2 + iη2m+1σρZ p d

2
−1X

d
2
+1 − iηm(1 + η)σρXZ

−η2m+1q d
2
X

d
2
−1 q d

2
−1X

d
2 + iη2m+1σρZ


 . (6.63)

By means of elementary row and column transformations this matrix can be brought into

the form



iσρZ X
d
2
+1

(
p d

2
−1 +

q2
d
2−1

η2m+1q d
2

)
+ iσρXZ

(
−ηm(1 + η) + 2

q d
2−1

q d
2

)

−q d
2
X

d
2
−1 iη2m+1σρZ


 (6.64)

Using the explicit formulas for the qi and pi, in particular q−1
d
2

= 1
2(1 − η)η(m+1)( d

2
−1), one

can show that the upper right entry of this matrix indeed simplifies to

−η2m+1

q d
2

X
d
2
+1 , (6.65)

and again using elementary row and column transformations O can be brought into the

form

O 7→
(

X
d
2
−1 −Z

Z X
d
2
+1

)
, (6.66)

which is easily recognised as the matrix θ1
d
2
−1

of the matrix factorisation Θ d
2
−1. Thus,

M ∼= coker(θ1
d
2
−1

) , (6.67)

and

P σ
{m,m+1} ∗ Ψρ = Θ d

2
−1 =

1

2

∑

l

N l
1 d

2

Θl . (6.68)

By means of the composition (6.47) this determines the action of all P±
I on the Ψ±. For

l1 odd, it is straightforward to derive

P σ
{m,...,m+l1} ∗ Ψρ =

1

2

∑

l

N l
l1

d
2

Θl . (6.69)

The simplest case for l1 even is obviously l1 = 0, which has been treated above, c.f. (6.54).

The next simple case is l1 = 2, for which the action of the defect can be obtained from

P σ
{m,m+1} ∗ P σ′

{m′,m′+1}Ψ
ρ = P σ

{m,m+1} ∗ Θ d
2
−1 = Ψ+ ⊕ Ψ− ⊕ Θ d

2
−2 . (6.70)

Here, we used that the factorisation Θ d
2

is reducible and can be decomposed into Ψ+ and

Ψ−. Applying (6.47) we obtain

P σσ′

{m+m′,m+m′+1,m+m′+2} ∗ Ψρ = Ψ(−1)m+m′
σσ′ρ ⊕ Θ d

2
−2 (6.71)

This immediately generalises to

P σ
{m,...,m+l1} ∗ Ψρ = Ψ(−1)mσρ ⊕ 1

2

∑

l

N l
d
2
l1
Θl for l1 even . (6.72)
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6.2 CFT approach

In the IR, the Landau-Ginzburg model with one chiral superfield and superpotential

W (X) = Xd and the one with an additional superfield and superpotential W (X,Z) =

Xd +Z2 both flow to versions of the unitary superconformal minimal model Mk, k = d−2

with A-type modular invariant partition function. The two versions only differ in the

definition of (−1)F on the Ramond-sectors.

The conformal field theories Mk are rational with respect to the N = 2 super Virasoro

algebra at central charge ck = 3k
k+2 . In fact, the bosonic part of this algebra can be realised

as the coset W-algebra

(SVirck
)bos =

ŝu(2)k ⊕ û(1)4
û(1)2k+4

, (6.73)

and the respective coset CFT can be obtained from Mk by a non-chiral GSO projection.

The Hilbert space Hk of Mk decomposes into irreducible highest weight representa-

tions of holomorphic and antiholomorphic super Virasoro algebras, but it is convenient to

decompose it further into irreducible highest weight representations V[l,m,s] of the bosonic

subalgebra (6.73). These representations are labelled by

[l,m, s] ∈ Ik := {(l,m, s) | 0 ≤ l ≤ k, m ∈ Z2k+4, s ∈ Z4, l + m + s ∈ 2Z}/ ∼ , (6.74)

where [l,m, s] ∼ [k − l,m + k + 2, s + 2] is the field identification. The highest weight

representations of the full super Virasoro algebra are given by

V[l,m] := V[l,m,(l+m)mod 2] ⊕ V[l,m,(l+m)mod 2+2] . (6.75)

For (l + m) even V[l,m] is in the NS-, for (l + m) odd in the R-sector. Here [l,m] ∈ Jk :=

{(l,m) | 0 ≤ l ≤ k, m ∈ Z2k+4}/ ∼, [l,m] ∼ [k − l,m + k + 2]. The Hilbert spaces of Mk

in the NSNS- and RR-sectors then read

Hk
NSNS

∼=
⊕

[l,m]∈Jk
l+m even

V[l,m] ⊗ V [l,m] , Hk
RR

∼=
⊕

[l,m]∈Jk
l+m odd

V[l,m] ⊗ V [l,m] . (6.76)

In this section we would like to discuss topological defects in the supersymmetric model

Mk preserving B-type supersymmetry. Located on the real line z = z∗ they impose the

following gluing conditions

T (z) − T (z∗)

T (z̄) − T (z̄∗)
G±(z) − ηG±(z∗)

G
±
(z̄) − η̄G

±
(z̄∗)





→ 0 for z − z∗ → 0 , (6.77)

for η, η̄ ∈ {±1}. Representing the defects as operators D : Hk → Hk the gluing conditions

lead to commutation relations

[Ln,D] = 0 =
[
Ln,D

]
(6.78)

G±
r D − ηDG±

r = 0 = G
±
r D − η̄DG

±
r ,
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for all n ∈ Z and all r ∈ Z+ 1
2 (r ∈ Z) in the NS- (R-) sectors. We will furthermore require

D to commute with (−1)F , which in general might be defined differently on both sides of

the defect. In this paper, the discussion will be restricted to the case in which the action

of (−1)F on both sides of the defect is the same, i.e. we will only discuss defects between

the same type of models. Composing D with (−1)F results in an operator satisfying gluing

conditions with opposite η and η̄. Likewise, η and η̄ can be changed separately if (−1)FL

and (−1)FR are on their own symmetries of the theory.16

Since Mk is a diagonal RCFT with respect to the N = 2 algebra, standard techniques

can be used to construct the defect operators. First, Schur’s lemma implies that for η = η̄

D has to be a linear combination

D =
∑

[l,m]

D[l,m]P[l,m] = DNSNS + DRR . (6.79)

of projectors P[l,m] on the irreducible representations V[l,m] ⊗ V [l,m]. From this it is simple

to obtain defects corresponding to other choices of η by composing with (−1)FL or (−1)FR .

Note that this formula combines the action of the defect on both NSNS- (l + m even) as

well as RR-sectors (l + m odd). At this point we assume that we are dealing with defects

between the same type of model, i.e. with the same definition of (−1)F . Namely, in contrast

to defects between the same version of minimal models, defects between the two different

versions are linear combinations of intertwiners between representations V[l,m,s] ⊗ V [l,m,s̄]

and V[l,m,s] ⊗ V [l,m,−s̄].

Indeed, also for the case of defects between the same version of minimal models it

is useful to write the defect operators as sums over projectors P[l,m,s,s̄] of the modules

V[l,m,s] ⊗ V [l,m,s̄] of the bosonic subalgebra

D =
∑

[l,m,s],s̄
s−s̄ even

D[l,m,s,s̄]P[l,m,s,s̄] , (6.80)

where it is understood that

D[l,m,s+2,s̄] = ηD[l,m,s,s̄] and D[l,m,s,s̄+2] = η̄D[l,m,s,s̄] . (6.81)

The possible linear combinations of projectors are restricted by sewing relations which

ensure that correlation functions do not depend on the different ways in which surfaces can

be sewn together. In particular there is a sewing relation similar to Cardy’s constraint for

boundary conditions (see e.g. [1]). The standard solution, which can also be obtained via

the folding trick from permutation boundary conditions is given by

D[l,m,s,s̄]

[L,M,S,S̄]
= e−iπ S̄(s+s̄)

2

S[L,M,S−S̄][l,m,s]

S[0,0,0],[l,m,s]
, (6.82)

where the different defects have been labelled by [L,M,S, S̄] with [L,M,S − S̄] ∈ Ik, and

S[L,M,S][l,m,s] =
1

k + 2
e−iπ Ss

2 eiπ Mm
k+2 sin

(
π

(L + 1)(l + 1)

k + 2

)
(6.83)

16In fact, the operators (−1)F , (−1)FL and (−1)FR are indeed associated to topological defects as well,

and composition with D can be interpreted as fusion of the respective defects.

– 33 –



J
H
E
P
0
8
(
2
0
0
7
)
0
9
3

is the modular S-matrix for the coset representations V[l,m,s]. Obviously, the possible

choices of S and S̄ are determined by η and η̄ in the usual way, η = (−1)S and η̄ = (−1)S̄ .

The defect does not change under (S, S̄) 7→ (S + 2, S̄ + 2).

Since these defects are topological we can bring them together to obtain new defects.

From (6.78) it is clear that this operation preserves the gluing conditions so that the result

will again be a B-type defect. The twist parameters η and η̄ are multiplicative. On the

level of defect operators this operation just amounts to their composition. Using the fact

that the quantum dimensions (6.82) form representations of the respective fusion rules N ,

one easily obtains the composition law

D[L1,M1,S1,S̄1]D[L2,M2,S2,S̄2] =
∑

[L,M,S−S̄]∈Ik,S̄

N [L,M,S−S̄]

[L1,M1,S1−S̄1][L2,M2,S2−S̄2]
δ
(4)

S̄1+S̄2,S̄
D[L,M,S,S̄]

=
∑

L

NL
L1L2

D[L,M1+M2,S1+S2,S̄1+S̄2] . (6.84)

Note that for L = 0 these defects are group-like. The defect labels [0,M, S, S̄] correspond to

simple currents, and their fusion determines the composition of the corresponding defects.

6.2.1 Action on boundary conditions

Next, we would like to discuss the action of these topological B-type defects on B-type

boundary conditions. On the real line the latter impose gluing conditions

T (z) − T (z̄)

G±(z) − ηG
±
(z̄)

}
→ 0 for z − z∗ → 0 , (6.85)

translating into the relations

(Ln − L−n)‖B〉〉 = 0 . (6.86)

(G±
r − iηG

±
−r)‖B〉〉 = 0

for the respective boundary states ‖B〉〉. The choice of sign η ∈ {±1} in the gluing condi-

tions for the supercurrents corresponds to the choice of different spin structures. Modules

V[l,m,s] ⊗ V [l,m,s] support Ishibashi states |[l,m, s]〉〉B solving the gluing conditions (6.86) if

[l,m, s] ∼ [l,−m,−s̄]. Thus, there are Ishibashi states |[l, 0, s]〉〉B for all [l, 0, s] ∈ Ik. In

case k is even there are additional Ishibashi states |[k2 , k+2
2 , 1]〉〉B .

Apart from the gluing conditions (6.86) above, the boundary condition should also

preserve Z2-fermion number, which means that (−1)F ‖B〉〉 = ‖B〉〉. Since the two CFTs

corresponding to the Landau-Ginzburg models with superpotentials W = Xd and W =

Xd + Z2 differ by the definition of (−1)F , we have to treat the two cases separately.

Case 1: W = Xd. Let us start with the CFT associated to the superpotential W = Xd.

In this model (−1)F acts on V[l,m,s] ⊗ V [l,m,s̄] as multiplication by (−1)
s+s̄
2 , and hence

only Ishibashi states |[l, 0, s]〉〉B can contribute to B-type boundary states.17 The standard

17The relevant GSO-projection in this model is of type 0A projecting onto the subspace H0A
k

∼=
L

(V[l,m,s] ⊗ V [l,m,−s]).
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construction yields boundary states

‖[L,M,S]〉〉NS
B = ‖[L,M + 2, S]〉〉NS

B =
√

2(k+2)

∑

[l,0,s]∈Ik
s even

S[L,M,S][l,0,s]√
S[0,0,0][l,0,s]

|[l, 0, s]〉〉B (6.87)

‖[L,M,S]〉〉RB = ‖[L,M + 2, S]〉〉RB =
√

2(k+2)

∑

[l,0,s]∈Ik
s odd

S[L,M,S][l,0,s]√
S[0,0,0][l,0,s]

|[l, 0, s]〉〉B ,

for every [L,M,S] ∈ Ik, where we have specified both, the NSNS- as well as the RR-

components. The boundary states in the GSO projected theory can be obtained by adding

RR- and NSNS-part of the boundary state with a normalisation factor 1√
2
.

A shift by 2 in the S labels inverts the sign in front of the RR-sector Ishibashi states

and hence corresponds to a brane-anti-brane map. Similarly as in the defect case, S mod

2 is given by η = (−1)S in the gluing conditions (6.85) above.

In case k is odd, all boundary states are oriented, i.e. they have non-trivial RR-

components and are therefore not invariant under the brane-anti-brane map. If k is even,

the boundary states ‖[k2 , k
2 − S, S]〉〉B have vanishing RR-component, and are therefore

unoriented.

Moving the topological B-type defects constructed above to a boundary with B-type

boundary condition amounts to applying the corresponding defect operators D[L1,M1,S1,S̄1]

to the respective boundary state ‖[L2,M2, S2]〉〉B . From (6.78) and (6.86) it is obvious

that the resulting states again satisfy B-type gluing conditions and preserve (−1)F . Fur-

thermore, sewing relations ensure that these states are again boundary states. Direct

calculation yields

D[L1,M1,S1,S̄1]‖[L2,M2, S2]〉〉B =
∑

[L,M,S]∈Ik

N [L,M,S]

[L1,M1,S1−S̄1][L2,M2,S2]
‖[L,M,S]〉〉B (6.88)

=
∑

L

NL
L1L2

‖[L,M1 + M2, S1 − S̄1 + S2]〉〉B .

From this one immediately deduces that defects with S1 − S̄1 = 0 map branes to branes,

hence are orientation preserving, whereas defects with S1−S̄1 = 2 reverse brane orientation.

Defects with odd S1 − S̄1 flip the spin structure compatible with the boundary condition.

Case 2: W = Xd + Z2. In the model corresponding to W = Xd + Z2, (−1)F acts

on V[l,m,s] ⊗ V [l,m,s̄] as multiplication by (−1)
s−s̄
2 , which only leaves the Ishibashi states

|[l, 0, s]〉〉B for even s and |[k2 , k+2
2 ,±1]〉〉B invariant.18 Since the models corresponding to

the superpotentials W = Xd and W = Xd + Z2 are Z2-orbifolds of each other [15], the

boundary states of one of the models can be obtained from the ones of the other by means of

a standard orbifold construction. Applying this construction to the boundary states (6.87)

18The corresponding GSO-projection is of type 0B and projects onto the subspace H0B
k

∼=
L

(V[l,m,s] ⊗

V [l,m,s]).
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one obtains [33]

‖[L,M,S]〉〉NS
B = ‖[L,M + 2, S]〉〉NS

B = ‖[L,M,S + 2]〉〉NS
B (6.89)

= 2
1−δ

L, k
2
√

k+2

∑

[l,0,s]∈Ik
s even

S[L,M,S][l,0,s]√
S[0,0,0][l,0,s]

|[l, 0, s]〉〉B

‖[L,M,S]〉〉RB = ‖[L,M + 2, S]〉〉RB = δL, k
2

√
2(k+2)e−

iπS2

2

∑

s=±1

e−
iπSs

2 |[k
2
,
k + 2

2
, s]〉〉B .

Note that for L 6= k
2 , the Z2-orbifold projects out the RR-components of the respective

boundary states, so that ‖[L,M,S]〉〉RB = 0 for L 6= k
2 . Thus, the boundary states associated

to such [L,M,S] are not oriented, and only depend on S mod 2, which distinguishing the

spin structures η = (−1)S . Only in case of even k do there exist oriented boundary states.

These emanate from boundary states with L = k
2 in the unorbifolded theory which are

invariant under the orbifold group and therefore pick up twisted RR-sector contributions

upon orbifolding. They are not invariant with respect to S 7→ S + 2.

Since the boundary states (6.89) with L 6= k
2 just correspond to Z2-orbits of boundary

states (6.87) of the unorbifolded model, one can immediately conclude from (6.88) that the

action of the defects on these states is given by

D[L1,M1,S1,S̄1]‖[L2,M2, S2]〉〉B =
∑

L6= k
2

NL
L1L2

‖L,M1 + M2, S1 + S̄1 + S2〉〉B (6.90)

+N
k
2
L1L2

(
‖[k

2
,M1 + M2, S1 + S̄1 + S2]〉〉B

+‖[k
2
,M1 + M2, S1 + S̄1 + S2 + 2]〉〉B

)

No RR-sector contribution can arise, and therefore only unoriented boundary states can

emerge from this operation. In particular, if k/2 is contained in the fusion of L1 and L2 the

sum of the two short orbit boundary states appears. Since the branes remain unoriented,

defects whose S1 + S̄1 differs by 2 act in the same way.

More interesting is the action on the unoriented boundary states with L = k
2 . The

action of a defect D[L1,M1,S1,S̄1] on the NS-component of a boundary state ‖[k2 ,M, S]〉〉B is

simply given by one half of (6.90) with L2 = k/2. Note that if L appears in the fusion of

k/2 with L1 so does k−L. This means that the action of the defect on the NS-component of

the oriented boundary state with L = k
2 produces a sum with unit coefficients of unoriented

boundary states with L 6= k/2. For odd L1, this is already the full story, since k/2 does

not appear in the fusion of k/2 with L1. Furthermore, defects with odd L1 annihilate the

RR-component of the boundary state due to the ŝu(2)k-part of the S-matrix. Hence for

L1 odd

D[L1,M1,S1,S̄1]‖[
k

2
,M2, S2]〉〉B =

1

2

∑

L

NL
L1

k
2

‖[L,M1 + M2, S1 + S̄1 + S2]〉〉B . (6.91)

On the other hand, if L1 is even, the fusion of L1 with k/2 will again contain k/2, and

instead of annihilating the RR-component of the boundary state, the defect operator mul-

tiplies it the respective Ishibashi states |[k2 , k+2
2 , s]〉〉B by (−1)

L1+M1−(S1+S̄1)s
2 . (Recall L1
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and therefore M1 − S1 − S̄1 are even, and s is odd.) It is then clear that the defect will

change the spin structure according to (S2 mod 2) 7→ (S1 + S̄1 + S2 mod 2). Whether the

resulting boundary state has S-label S1 + S̄1 + S2 or S1 + S̄1 + S2 + 2 is determined by the

overall sign of the RR-component. Altogether, for L1 even one arrives at

D[L1,M1,S1,S̄1]‖[
k

2
,M2, S2]〉〉B =

1

2

∑

L6=k/2

NL
L1

k
2

‖[L,M1 + M2, S1 + S̄1 + S2]〉〉B (6.92)

+‖[k
2
,M1+M2, S1+S̄1+(−1)S1+S̄1S2−L1−M1−(S1+S̄1)

2]〉〉B .

The orientation of the oriented boundary state appearing in this composition depends on

the defect labels and S2 in a rather complicated way. In the case that the defect preserves

the spin structure of the boundary state (that is S1 + S̄1 is even, and hence also L1 + M1

even), the corresponding S-label is given by S1 + S̄1 + S2 −L1 −M1. If on the other hand

the defect changes the spin-structure, i.e. S1 + S̄1 is odd, the resulting S-label becomes

S1 + S̄1 − S2 − L1 − M1 − 1.

A-type boundary states. et us close the discussion of the conformal field theory of

topological defects by noting that since these defects are topological, they also act naturally

on A-type boundary states. These satisfy gluing relations

(Ln − L−n)‖A〉〉 = 0 . (6.93)

(G±
r − iηG

∓
−r)‖A〉〉 = 0

and, in the theory corresponding to W = Xd + Z2, are given by the standard Cardy

boundary states

‖[L,M,S]〉〉NS
A =

√
2

∑

[l,m,s]
s even

S[L,M,S][l,m,s]√
S[0,0,0][l,m,s]

|[l,m, s]〉〉A , (6.94)

‖[L,M,S]〉〉RA =
√

2
∑

[l,m,s]

s odd

S[L,M,S][l,m,s]√
S[0,0,0][l,m,s]

|[l,m, s]〉〉A .

The discussion of the action of the topological defects on these boundary states is similar

to the one for the B-type boundary states, with the result

D[L1,M1,S1,S̄1]‖[L2,M2, S2]〉〉A =
∑

L

NL
L1L2

‖[L,M1 + M2, S1 + S̄1 + S2]〉〉A . (6.95)

We omit a discussion for the A-type boundary states in the theory with the other definition

of the fermion number. Let us just mention that one can again use orbifold techniques to

construct the boundary states from the ones given above. Since none of the states (6.94) is

invariant under the respective orbifold group, they do not get twisted sector contributions

in the orbifolding construction. Instead they can all be represented as orbits under the

orbifold group of the boundary states in the unorbifolded theory. Hence, the action of the

defects on these boundary conditions can be easily deduced from (6.95).
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6.2.2 Comparison to the Landau-Ginzburg analysis

We can now compare the results to the Landau-Ginzburg analysis of section 6.1. Matrix

factorisations of type PI for I consisting of consecutive integers modulo d are known to

correspond to permutation boundary conditions in the tensor product of minimal mod-

els [34, 23]. The folding trick therefore implies that the PI indeed correspond to the

topological defects constructed above. More precisely:

P{m,m+1,...,m+l} ↔ D[l,l+2m,0,0] , (6.96)

P±
{m,m+1,...,m+l} ↔ D[l,l+2m,1∓1,0] .

The folding trick guarantees that this identification is compatible with the topological

spectra. Comparing the formula (6.28) for compositions of the defects PI in Landau-

Ginzburg models with the formula (6.84) for the composition of the topological defects

D[l,l+2m,S,0], S ∈ {0, 2} in minimal models one indeed also finds agreement.

Using the correspondence [12]

Tl ↔ ‖[l − 1, l − 1, 0]〉〉B (6.97)

between matrix factorisations of W = Xd and boundary conditions in minimal models,

one easily observes that the agreement found for the composition of defects also holds for

the action of defects on boundary conditions (c.f. equations (6.37) and (6.88)).

This extends to the defect action on the tensor product factorisations Θl, in models

with superpotentials W = Xd + Z2. As has been discussed in [15] they correspond to the

unoriented “long orbit” boundary states with L 6= k
2 in (6.89):

Θl ↔ ‖[l − 1, l − 1, 0]〉〉B for l 6= d

2
, (6.98)

Θ d
2
↔ ‖[d

2
− 1,

d

2
− 1, 0]〉〉B + ‖[d

2
− 1,

d

2
− 1, 2]〉〉B ,

and a comparison between (6.50) and (6.90) shows agreement for the defect action on these.

The matrix factorisations Ψ± on the other hand which exist for even d correspond to the

oriented “short orbit” boundary states with L = k
2 in (6.89) [15]

Ψ± ↔ ‖[d
2
− 1,

d

2
− 1, 1 ∓ 1]〉〉B . (6.99)

Also for these boundary conditions the defect action derived in the Landau-Ginzburg frame-

work (6.72), (6.69) agrees with the one found in the conformal field theory (6.92), (6.91).

Let us close this discussion by noting that the matrix factorisations Ti,j are indeed

tensor product matrix factorisations.19 The latter are known to correspond to the re-

spective tensor product boundary states in the IR. The folding trick therefore implies the

identification of these matrix factorisations with the completely reflective conformal B-type

defects

Ti,j ↔ ‖[i − 1, i − 1, 0]〉〉〈〈[j − 1, j − 1, 0]‖ (6.100)

19We discuss these types of defects in the model corresponding to W = Xd. The discussion immediately

carries over to the model associated to W = Xd + Z2.
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in the minimal models Mk. That this identification is compatible with the topological spec-

tra is clear from the folding trick. Since these defects are not topological their composition

and action on boundary conditions is not well-defined in the CFT.

7. Discussion

In this paper, we have discussed B-type defects in the context of Landau-Ginzburg theo-

ries. Those defects between models with superpotential W1 and W2 can be described by

matrix factorisations of W1 −W2. We have discussed how two such defects can merge, and

how they act on B-type boundary conditions, which in turn have a description in terms of

matrix factorisations of the individual superpotentials Wi. These two operations turn out

to be quite similar, namely, they are both given by taking the tensor product of the ma-

trix factorisations describing defects and boundary conditions respectively. The resulting

factorisations are a priori infinite dimensional, but can be reduced to finite dimensional

ones by splitting off infinitely many brane-anti-brane pairs. We have described a method

of how to obtain the reduced factorisations without going through the explicit reduction

procedure.

We have discussed the special defects arising from symmetries of the bulk theories,

and compared in detail the description of B-type defects in Landau-Ginzburg models with

superpotentials W = Xd, W = Xd + Z2, with the one of defects in the corresponding IR

CFTs.

As a next step it would now be interesting to extend the analysis to charge-projected

Landau-Ginzburg models with several superfields, which in the IR flow to superconformal

field theories with c = 9 and describe the stringy regime of Calabi-Yau compactifications.

Of course, the matrix factorisations for Landau-Ginzburg models with more chiral super-

fields are more complicated, but at least for models where the superpotential is a Fermat

polynomial the factorisations described here can be used as building blocks. Furthermore,

the orbifold construction introduces more structure, because it makes it necessary to con-

sider graded matrix factorisations [35, 36].

Since certain orbifolds of Landau-Ginzburg models have a geometric interpretation as

sigma model with target space X, the projective variety defined by the vanishing of the

superpotential, the question about the geometric realisation of the defects and the D-branes

they act on arises. For D-branes, the connection between matrix factorisations and large

volume geometry has been investigated in [37 – 40, 22, 41]. A first idea of a geometric

realisation of the defects can be obtained via the folding trick, according to which defects

connecting two sigma models with target spaces X,Y correspond to B-type D-branes on

the product X × Y . The respective D-brane category in the topologically twisted theory

can be described by D♭(Coh(X × Y )), the derived category of coherent sheaves on the

product space.

According to our general discussion, we expect that the defects act on D-branes and

hence should provide transformations from D♭(Coh(X)) to D♭(Coh(Y )), and indeed one

can associate to any element Φ ∈ D♭(Coh(X × Y )) a Fourier-Mukai transformation with
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kernel Φ.20 Conversely, it has been shown [43, 44] that any equivalence D♭(Coh(X)) →
D♭(Coh(Y )) can be written as a Fourier- Mukai transformation. It therefore seems plausible

that defects have a natural interpretation as Fourier-Mukai transformations at large volume.

For some simple transformations this is indeed the case. For instance, in Landau-

Ginzburg orbifolds, there is a quantum symmetry which is broken once one moves away

from the Landau-Ginzburg point in the bulk moduli space. We can associate a symmetry

defect to this operation, which acts on the D-branes in the Landau-Ginzburg model. This

quantum symmetry is known to correspond to the B-brane monodromy transformation

around the Landau-Ginzburg point, which in the geometric context can be realised by a

Fourier-Mukai transformation. We hope to come back to this issue in the future.
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A. Spectra of symmetry defects

Let W (Xi) be a polynomial in the variables X1, . . . ,Xn. Furthermore let Γ be a group

acting linearly and unitarily on the space spanned by the Xi. Then for any g ∈ Γ, the

polynomial W (Xi)−W (Yi) can be written as in (5.8) leading to the matrix factorisation Dg

of (5.9). Here we would like to outline the calculation of the BRST-cohomology H∗(Dg,D1).

For this let Q := Dg and R := C[Xi, Yi]/(W (Xi) − W (Yi)). As used in section 4.2,

Hi(Q,D1) ∼= Ext2+2n+i
R (coker(q1), R/(Xi − Yi)) . (A.1)

The Ext-groups can be calculated as the cohomology of the sequence obtained by applying

the functor Hom(·, R/(Xi−Yi)) to the the R-free resolution of coker(q1) given by the matrix

factorisation Q. But this sequence can be written as

. . .
eq1−→ (R/(Xi − Yi))

2n eq0−→ (R/(Xi − Yi))
2n eq1−→ (R/(Xi − Yi))

2n −→ 0 , (A.2)

where q̃a = qa(Xj , Yj = Xj). Let us assume that g acts diagonally on the Xi. Then, setting

Yj = Xj in each of the tensor factors P i of Dg amounts to p̃i
1 = 0, p̃i

0 = Ai(Xj , Yj = Xj)

in case Xi is g-invariant, and p̃i
1 = (1− g)(Xi), p̃i

0 = 0 otherwise.21 From this it is obvious

that ker(q̃a) is non-trivial only if a + |{j|Xj 6= g(Xj)}| is even, in which case the kernel is

just

ker(q̃a) ∼= R/(Xi − Yi)R (A.3)

20A Landau-Ginzburg realisation of certain Fourier-Mukai transformations , namely monodromy actions,

has been discussed in [42].
21The latter can always be achieved by means of an equivalence transformation.
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and

im(q̃a+1) =
∑

Xj 6=g(Xj)

(1 − g)(Xj)R/(Xi − Yi)R (A.4)

+
∑

Xj=g(Xj)

Aj(Xi, Yi = g(Xi))R/(Xi − Yi)R .

Thus for a = |{j|Xj 6= g(Xj)}| =: Nn−inv

ker(q̃a)/im(q̃a+1) ∼= C[X inv
j ]/(∂jWinv) , (A.5)

where X inv
j are the g-invariant variables and Winv is obtained from W by setting all non-

invariant variables to zero. Therefore we obtain

HNn−inv(Dg,D1) ∼= C[X inv
j ]/(∂jWinv) , (A.6)

HNn−inv+1(Dg,D1) ∼= {0} .

The result can be summarised as follows: every state in H∗(Dg,D1) can be written as

p(X inv
i )

∏
j:Xj 6=g(Xj)

ωj, where ωj are fermions associated to every non-g-invariant variable

Xj , and p ∈ C[X inv
i ]/(∂iWinv) is a polynomial in the g-invariant variables X inv

j = g(X inv
j ).

Winv is obtained from W by setting all non-invariant variables to zero. This is in agreement

with the g-twisted bulk Hilbert spaces obtained in [25, 24].

B. Explicit equivalence for D1 ⊗ T1

Here we would like to show explicitly that the infinite dimensional matrix factorisation

D1 ⊗ T1(Y ) : r1 =

(
X − Y −Y

Y d−1 Xd−Y d

X−Y

)
, r0 =

(
Xd−Y d

X−Y Y

−Y d−1 X − Y

)
(B.1)

of Xd over C[X], which is obtained as the tensor product of the matrix factorisations

D1 : p1 = (X − Y ), p0 =
Xd − Y d

X − Y
(B.2)

of Xd − Y d and

T1(Y ) : q1 = Y, q0 = Y d−1 (B.3)

of Y d is indeed equivalent to T1(X). Using the trick discussed in section 4.2 one easily ar-

rives at this conclusion, because D1⊗T1(Y ) has to be equivalent to the matrix factorisation

obtained from the R = C[X]/(Xd)-free resolution of the module M := coker(X − Y, Y ) ∼=
coker(X,Y ) ∼= R/XR by chopping off an even number of terms. But obviously M has an

R-free resolution given by T1(X).

To construct the equivalence explicitly note first that by means of

u0 =

(
1 0

1
X

(
Xd−Y d

X−Y − Y d−1
)

1

)
, v0 = u−1

0 , (B.4)

u1 =

(
1 0

−1 −1

)
, v1 = u−1

1 (B.5)
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(r1, r0) is equivalent to

r′1 =

(
X Y

0 −Xd−1

)
, r′0 =

(
Xd−1 Y

0 −X

)
. (B.6)

Regarding C[X,Y ] as the infinite dimensional free C[X]-module C[X,Y ] ∼= C[X]+Y C[X]+

Y 2C[X] + . . ., Y can be represented by the infinite dimensional matrix

Y =




0

1
. . .
. . .

. . .


 . (B.7)

Using this representation r′1 takes the form

r′1 =




X 0
. . . 1

. . .
. . .

. . .
. . .

−Xd−1

. . .
. . .




(B.8)

Now one easily finds the following chain of elementary row and column transformations of

r′1:

r′1 7→




X 0

1 X
. . .

. . .
. . .

. . .

0 −Xd−1

. . .
. . .
. . .




7→




X

1
. . .

0 −Xd−1 Xd

. . .
. . .

. . .
. . .

. . .




7→




X

1
. . .

Xd

. . .
. . .




(B.9)
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The opposite transformations lead to

r′0 7→




Xd−1

Xd

. . .

1
. . .

. . .




, (B.10)

and hence we have obtained an explicit equivalence of the infinite dimensional matrix

factorisation D1⊗T1(Y ) to the sum of the matrix factorisation T1(X) with infinitely many

trivial matrix factorisations (1,Xd).
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